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Abstract

Knowledge graphs are widely applied in many applications. Automatically solving mathematical exercises is also an interest-
ing task which can be enhanced by knowledge reasoning. In this paper, we design MathGraph, a knowledge graph aiming to 
solve high school mathematical exercises. Since it requires fine-grained mathematical derivation and calculation of different 
mathematical objects, we design a crowdsourcing-based method to help build MathGraph. MathGraph supports massive 
kinds of mathematical objects, operations and constraints which may be involved in exercises. Furthermore, we propose an 
algorithm to align a semantically parsed exercise to MathGraph and figure out the answer automatically. Extensive experi-
ments on real-world datasets verify the effectiveness of MathGraph.

Keywords Knowledge graph · Mathematical exercise · Knowledge reasoning · Crowdsourcing

1 Introduction

Currently, large-scale knowledge graphs are widely used in 
many real-world applications, such as semantic web search, 
question–answer systems, natural language processing and 
data analysis. For example, if we ask “What is the highest 
mountain?” on a web search engine, it may directly show 
the answer “Everest” with the help of a knowledge graph.

Recently, intelligent education has become more and 
more popular and automatically resolving mathematical 
exercises can help students improve the comprehensive abil-
ity. However, it is rather challenging to automatically resolve 
mathematical exercises without knowledge graphs, because 
it requires to use complex semantics and extra calculations. 
In this paper, we propose MathGraph, a knowledge graph 
aiming to solve high school mathematical exercises. Math-
Graph must be specially designed and differentiated from 
other knowledge graphs. The reasons are listed as follows:

1. Knowledge in MathGraph belongs to a specific domain 
Building MathGraph requires specific mathematical 
knowledge. Traditional knowledge graphs are built 

based on extensive semantic data, e.g. Wikipedia. How-
ever, it is very hard to get the semantic data for math-
ematical problems.

2. Knowledge in MathGraph is stored in class level rather 

than instance level. Most of the traditional knowledge 
graphs focus on extracting instances, categories and 
relations among instances. For example, a 3-tuple (Bei-
jing, isCaptialOf, China) shows a relation between two 
instances. However, in MathGraph, there is no instance in 
the origin graph, but only many class-level mathematical 
objects (such as Complex Number and ellipse). Only if an 
exercise is given, instances will be created accordingly.

3. MathGraph supports mathematical derivation and calcu-

lation. The reasoning process of mathematical problems 
is different from other problems, because besides logical 
relation, mathematical derivation must be included in the 
knowledge graph to solve mathematical exercises.

Moreover, there are numerous mathematical entities that need 
to be extracted, and it is very difficult to parse them automati-
cally from the exercise texts. It is too expensive to ask a large 
number of experts to extract the entities for us. However, if 
we hire a few experts, it is difficult to derive complete entities 
in the domain. To address this, we decide to construct Math-
Graph via crowdsourcing. Existing works [4, 24] that focused 
on entity extraction of knowledge graph mainly extract entities 
from general web pages. However, our entities such as math 
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objects, operations and constrains are from mathematical 
exercises, which is more complicated and domain-specific. 
Therefore, we have to design special tasks for MathGraph.

Thus, in this paper, we focus on designing and building 
a knowledge graph MathGraph for resolving mathematical 
problems. We also propose an effective algorithm to align 
a mathematical problem to MathGraph, and use the aligned 
sub-graph to resolve a mathematical exercise. Our contribu-
tions are as follows.

• We specially design the structure of MathGraph to sup-
port mathematical derivation and calculation. We model 
different mathematical objects, operations and constraints 
in MathGraph. To the best of our knowledge, this is the 
first attempt to build a knowledge graph for resolving 
mathematical problems.

• We propose an approach to construct MathGraph via 
crowdsourcing.

• We propose an algorithm to align a mathematical prob-
lem to MathGraph.

• We design a method to resolve mathematical exercises 
with the help of a semantic parser.

• Experimental study shows great performance of Math-
Graph and our proposed method.

Figure 1 gives an overview of the exercise-solving process 
with MathGraph. We detail the structure of MathGraph and 
the exercise-solving algorithm later. 

The rest of this paper is organized as follows. Section 2 
introduces some related works. Section 3 introduces some 
concepts involved in MathGraph. Section 4 overviews the 
structure of MathGraph. Section 5 introduces how to build 

MathGraph using crowdsourcing. Section 6 proposes some 
algorithms to solve mathematical exercises. Section 7 gives 
the experiment results, and we conclude the paper in Sect. 8.

2  Related Work

2.1  Reasoning with Knowledge Graph

Since knowledge graphs can provide well-structured infor-
mation and relations of the entities, it is known to be useful 
to do reasoning in many tasks, such as query answering and 
relation inference (i.e. to infer missing relations in the knowl-
edge graph [10, 21, 22]). Gu et al. [15] proposed a technique 
to answer queries on knowledge graph by “compositional-
izing” a broad class of vector space models, which performs 
well on query answering and knowledge graph completion. 
Toutanova et al. [32] proposed a dynamic programming algo-
rithm to incorporate all paths in knowledge graph within a 
bounded length, and modelled entities and relations in the 
compositional path representations. Zhang et al. [35] pre-
sented a deep learning architecture and a variational learn-
ing algorithm, which can handle noise in the question and 
do multi-hop reasoning in knowledge graph simultaneously. 
Zheng et al. [37] used a large number of binary templates 
rather than semantic parsers to query knowledge graph with 
natural language. A low-cost technique that can generate a 
large number of templates automatically is also proposed.

Our work is different from above works. Firstly, there are 
some differences between the structure of MathGraph and 
existing knowledge graphs (e.g. Freebase and NELL [3]). Sec-
ondly, to solve a math exercise usually requires multi-step 

Fig. 1  Overview of using MathGraph to solve a mathematical exercise
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mathematical derivation, and the derivation procedures need 
to be output as the problem-solving process. Thirdly, deri-
vation and calculation should be performed simultaneously 
when solving an exercise to retrieve the answer.

2.2  Automatically Solving Mathematical Problems

Automatically solving mathematical problems has been stud-
ied over years. But they only focused on easy problems, e.g. 
mathematical problems in primary schools. Kojiri et al. [18] 
constructed a mechanism called solution network to auto-
matically generate the answers for mathematical exercises. 
The solution network is represented as a tree to describe 
inclusive relations of exercises. Tomas et al. [31] proposed a 
framework of constraint logic programming to automatically 
generate and solve mathematical exercises. This paper pro-
posed to concentrate on the solving procedures rather than 
many simple exercise templates so that the generation and 
explanation of these exercises are easy. Ganesalingam et al. 
[13] proposed a method that solves elementary mathematical 
problems using logical derivation and shows solutions which 
are made difficult to distinguish from human’s writing.

However, these works all have some limits. For example, 
some can solve those problems only involving elementary 
math (e.g. set theory, basic algebraic operation) without 
deeper theorems; some only support very limited logical 
derivation. Thus, in this paper, we present a knowledge 
graph to represent as many mathematical entities and logi-
cal relationships as possible.

2.3  Entity Extraction and Knowledge Graph 
Construction with Crowdsourcing

Crowdsourcing is widely used to extract entities and knowl-
edge from massive types of data [5, 6, 14, 27, 34]. Chai et al. 
[4] focused on collecting entities using crowdsourcing with 
low cost and high quality. Dumitrache et al. [11] proposed a 
method for collecting medical relation using crowdsourcing. 
Seifert et al. [30] presented a method to extract entities from 
scientific literature, which further can be used to create an 
open knowledge base.

Crowdsourcing is also used to construct, update or inte-
grate knowledge graph, such as Freebase [2]. Xin et al. [33] 
proposed a method for subjective knowledge base construc-
tion, which leverages crowd workers to annotate the sub-
jective properties of the instances. McCoy et al. [23] used 
crowdsourcing to construct a clinical knowledge base by 
identifying relationships between medication pairs. Meng 
et al. [24] proposed a framework for large-scale knowledge 
base integration through crowdsourcing.

Compared with the conference version [36], we make 
the following contributions. Firstly, we design several 

user-friendly interfaces to leverage the crowd to build the 
MathGraph. Secondly, we design more quality control 
methods customized to the MathGraph construction prob-
lem. Thirdly, we conduct extensive experiment to evaluate 
the crowd-based method. Experiment results show that our 
method can achieve a higher quality than the expert-only 
approach while spending not so much money. Fourthly, we 
discuss more related works in this manuscript.

3  Preliminaries

In this section, we describe the entities that may appear in 
MathGraph, including mathematical objects and instances, 
operations and constraints. Table 1 shows the notations used 
in this paper. 

3.1  Mathematical Object and Instance

A mathematical object is an abstract object which has a defini-
tion and some properties, and can be taken as the target of some 
operations or derivation. Note that a mathematical object can be 
defined in terms of other objects. A concrete object that satisfies 
the definition of the mathematical object is called an instance.

For example, Complex Number can be considered as a 
mathematical object:

• Definition A complex number is a number that can be in 
the form a + bi , where a and b are both real numbers and 
i is the imaginary unit which satisfies i2 = − 1.

• Property example Imaginary part is a property of a com-
plex number. The imaginary part of a complex number 
a + bi is b.

• Operation example (a
1
+ b

1
i) ⋅ (a

2
+ b

2
i) = (a

1
a

2
− b

1
b

2
)+ 

(a
1
b

2
+ a

2
b

1
)i

• Derivation example: If (a
1
+ b

1
i) and (a

2
+ b

2
i) are con-

jugated to each other, then a
1
= a

2
 and b

1
+ b

2
= 0.

Table 1  Notations

Notation Description

G MathGraph

v
o

An object node

v
p

An operation node

v
c

A constraint node

e
DERIVE

A DERIVE edge

e
FLOW

A FLOW edge

O A set of mathematical objects

I A set of mathematical instances

C A set of constraints

G
I

A DAG describing dependency 
of all the uncertain instances
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And 2 + 3i and (i + 1)(i − 3) are instances of Complex 

Number.
Different mathematical objects should be described as 

different structures in MathGraph. Thus, in MathGraph, a 
mathematical object is represented with a tuple of key prop-

erties 
(

p1, p2,… , p
n

)

 . The key properties of a mathemati-
cal object are those properties that together can form and 
describe all the information of an instance of the object. 
Table 2 shows examples of key properties of some math-
ematical objects. Two instances of a mathematical object are 
equivalent if and only if all the key properties are equivalent.

In a mathematical exercise, instances can be categorized 
into certain instances and uncertain instances depending on 
whether it contains some uncertain values as its key proper-
ties. An instance is a certain instance if all key properties are 
certain, uncertain instance otherwise. For example, a real 
number 2.3 and a function f (x) = x + sin(x) are certain; a 
complex number 3 + ai (where a ∈ ℝ ) and a random triangle 
ΔABC are uncertain.

3.2  Operation

Generally, an operation is an action or procedure which, 
given one or more mathematical objects as inputs (known 
as operands), produces a new object. Simple examples 
include addition, subtraction, multiplication, division and 
exponentiation. In addition, other procedures such as calcu-
lating the real part of a complex number, the derivative of 
a function and the area of a triangle can also be considered 
as operations.

3.3  Constraint

A constraint is a description or condition about one or more 
instances, at least one of which is an uncertain instance. 
There are four types of constraints: descriptive constraints 
(e.g. complex numbers x and y are conjugated), equality con-

straints (e.g. a + 2 = b ), inequality constraints (e.g. a2 ≤ 5 ) 
and set constraints (e.g. a ∈ ℕ).

Most descriptive constraints cannot be applied directly 
to solve the exercise, but can be converted into other three 

types of constraints using some definitions or theorems. For 
example, if an exercise says “ a + 3i and 7 − bi are a conju-
gate pair”, by the definition of conjugate complex, we can 
know that a = 7 and 3 + (− b) = 0 by derivation.

4  The Structure of MathGraph

MathGraph is a directed graph G = ⟨V , E⟩ , in which each 
node v ∈ V  denotes a mathematical object, an operation or a 
constraint, and each edge e ∈ E is the relation of two nodes.

4.1  Nodes

In general, nodes are categorized into three different types: 
object nodes, operation nodes and constraint nodes.

4.1.1  Object Nodes

An object node v
o
= (t, P, C) represents a mathematical 

object, where t denotes an instance template of this math-
ematical object; P = (P1, P2,… , P

n
) is a tuple indicating 

key properties of the mathematical object; and C is a set of 
constraints that, according to the definition or some theo-
rems, must be satisfied by this mathematical object. Table 3 
shows an example of “triangle” as an object node. We can 
see that properties and theorems of triangles are included in 
the constraint set.

4.1.2  Operation Nodes

An operation node vp = (X1, X2,… , Xk, Y , f ) represents a 
k-ary operation, where X

i
(i = 1, 2,… , k) and Y are object 

nodes representing the domain of the ith operand x
i
 and the 

result of the operation y, respectively, and f is a function that 
implements the operation and can be finished by a series 
of symbolic execution [1, 9, 17] process using a symbolic 
execution library (e.g. SymPy [26], Mathematica [16]) even 
if some operands are uncertain instances.

For example, getting the modulus of a complex num-

ber is an unary operation where X
1
= ⟨�������������⟩ , 

Y = ⟨����������⟩ and f can be implemented by the follow-
ing symbolic execution process: (1) get the real part of x

1
 ; 

(2) get the imaginary part of x
1
 ; (3) return the squared root 

of the sum of (1) squared and (2) squared.

4.1.3  Constraint Nodes

A constraint node vc = (d, X1, X2,… , Xk, f ) represents 
a descriptive constraints of k instances, where d is the 

Table 2  Examples of key properties of different mathematical objects

Mathematical object Example instance Key properties

Complex number ai + b (a, b)

Elementary function f (x) = ⟨ an algebraic 
expression about x⟩

⟨The algebraic 
expression⟩

Triangle ΔABC (a, b, c,∠A,∠B,∠C)

Line Ax + By + C = 0 (A, B, C)

Ellipse x2

a2
+

y2

b2
= 1

(a, b)
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description of the constraint, X
i
(i = 1, 2,… , k) are object 

nodes representing the domain of each involving instance, 
and f is a function which maps this descriptive constraint 
into several equality constraints, inequality constraints and 
set constraints.

For example, a constraint node represents that x
1
 and x

2
 are 

a conjugate pair, where X
1
= X

2
= ⟨Complex Number⟩ and f 

can be implemented by the following process: (1) get the real 
part of x

1
 as a

1
 ; (2) get the real part of x

2
 as a

2
 ; (3) get the 

imaginary part of x
1
 as b

1
 ; (4) get the imaginary part of x

2
 as 

b
2
 ; (5) return two equality constraints: a

1
= a

2
 and b

1
+ b

2
= 0.

4.2  Edges

There are two types of edges in MathGraph: the DERIVE edges 
and the FLOW edges.

4.2.1  The DERIVE Edge

For two object nodes X and Y, there may be a DERIVE edge 
e

DERIVE
= (X, Y , f ) to indicate a general–special relation-

ship between them, such as Triangle and Isosceles Trian-

gle. If X
DERIVE

�������������������������→ Y  , an instance of X can be reassigned as an 
instance of Y if certain conditions are met. These conditions 
are encapsulated into a function f ∶ X → {False, True} : if 
these conditions are met, the function f will return True and 
reassign the instance from X to Y; otherwise, it will simply 
return False.

For example, there is a DERIVE edge from object node 
TriaNgle to isosCeles TriaNgle, where the function f can 
be implemented as: (1) if the values of key properties or a 
constraint shows that two angles or lengths of two edges of 
the origin instance are equal, return an instance of Isosceles 

Triangle with the same key properties; (2) otherwise, return 
False.

When solving an exercise, reassigning an instance to a 
more specific object node will bring more constraints of this 
object and help find the answer. For example, for a rhombus 
ABCD, if we know that ∠A = 90

◦ , we can infer, by the DERIVE 
edge from object node rhombus to square, that ABCD is a 
square and has constraints that ∠A = ∠B = ∠C = ∠D = 90

◦.

4.2.2  The FLOW Edge

A FLOW edge e
FLOW

= (X, Y) indicates the flow direction of 
instances during the exercise-solving process, which may 
only exist from an object node to an operation node, from 
an operation node to an object node or from an object node 
to a constraint node.

The FLOW edges between object nodes and opera-
tion nodes represent the process of passing instances as 

Fig. 2  Example of the FLOW 
edges

Table 3  An example of object node: triangle

Mathematical object Triangle

Instance template ΔABC

Key properties (a, b, c, A, B, C)

Constraint set {a, b, c > 0,

0 < A, B, C < 𝜋,

A + B + C = �,

a + b > c, a + c > b, b + c > a,

a

sin A
=

b

sin B
=

c

sin C
,

a
2
= b

2
+ c

2
− 2bc sin A,

b
2
= a

2
+ c

2
− 2ac sin B,

c
2 = a

2 + b
2 − 2ab sin C}
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parameters before the operation and the process of returning 
a new instance after it. For example, in Fig. 2, the two FLOW 
edges pointing to the operation node “addition” indicate that 
this operation takes two instances of complex number as its 
input values, and the edge leading from this operation node 
indicates that it returns a new instance of complex numbers.

The FLOW edges from object nodes to constraint nodes 
also represent the process of passing parameters of the con-
straints. For example, in Fig. 2, the two FLOW edges pointing 
to the constraint node “x and y are a conjugate pair” indi-
cates that this constraint takes two complex number as its 
input. Note that constraints nodes only convert descriptive 
constraints into other types of constraints and generate no 
instances, so there are no FLOW edges from a constraint node 
to an object node.

In summary, MathGraph is a well-structured graph sup-
porting different mathematical objects, operations and con-
straints. Next, we will discuss how to solve mathematical 
exercises using it.

5  MathGraph Construction using 
Crowdsourcing

As is mentioned above, MathGraph can be used to solve 
mathematical exercises. However, the objects, operations 
and constraints in MathGraph need to be extracted and 
refined by mathematical logic, so it is very difficult to con-
struct MathGraph automatically. If one or a small group 
of people are chosen to create MathGraph manually, it is 
highly likely that some entities are missing, incomplete or 
incorrect. Therefore, we tackle this problem by leveraging 
the power of crowdsourcing to construct and validate the 
MathGraph.

Our whole task in this section can be described as fol-
lows. Given a set of mathematical exercises R , we try to 
build MathGraph in a crowdsourcing platform (such as 
Amazon Mechanical Turk) and crowd workers. First of all, 
we need to extract all the mathematical objects, operations 
and constraints from the exercises. We randomly partition 
the exercise set R into several disjoint subsets {R1, R2,…} , 
where every subset contains no more than k (1 ≤ k ≤ |R|) 
exercises. In practice, considering one worker can only han-
dle limited exercises at once, k is recommended to take val-
ues between 5 and 20. Then we assign m crowd workers to 
each subset and design a set of user interfaces and questions 
to extract the objects, operations and constraints from text.

Quality control is also necessary in this task. Note that 
the workers who are familiar with the mathematical con-
cepts and exercises can do a good job. Therefore, the hired 
workers need to know some fundamental and simple domain 
knowledge of math. To address this, we provide a detail 
instruction of the mathematical exercises which aims to 

guide the workers. In addition, to block the workers who are 
not qualified, we provide a quiz for each incoming worker. 
Only the workers who achieve high score can participate in 
the following tasks. Furthermore, since the answers still may 
contain incorrect or duplicated entities, we need to design 
corresponding algorithms to validate them.

5.1  Extracting Objects

The user interface we designed for extracting objects is 
shown in Fig. 3a. After workers submit their answers on 
the platform, we can obtain a collection of object names 
O = {O1, O2,… , O

m
} , where O

i
 contains the names 

answered a worker. However, there exists two types of errors 
in the collected answers:

1. Duplicate answers Different names are actually referring 
to the same mathematical object, e.g. “Complex” and 
“Complex Number”, “Point on the plane” and “Point in 
two-dimensional space”.

2. Wrong answers Names of other entities are incorrectly 
categorized as mathematical objects. For instance, some 
worker submit “Complex Conjugate” as a mathematical 
object, which is actually an operation.

In order to solve the first type of error, we apply a classic 
entity resolution technique [7, 8]. Given a pair of collected 
object names {{oi, oj}�oi, oj ∈

⋃m

k=1
Ok} , we can compute 

the similarity sij by utilizing any similarity function, e.g. 
Jaccard similarity, edit distance. We take Jaccard similarity 
as an example here. We first tokenize o

i
 into a set of tokens 

and compute Jaccard on token sets as follows.

Then, we select all pairs with similarity no less than a given 
similarity threshold (e.g. 0.3) and design questions for each 
pair to ask multiple workers whether two names are actually 
one object. Figure 3d shows an example of the question. 
After that, we can easily determine whether the pair should 
be merged into one object by these workers’ (uniform or 
weighted [19]) majority vote.

As for the second type of error, we first count the number 
of occurrences of every name in O , denoting as c(o

i
) . The 

frequency of the name can be further defined as f (oi) =
c(oi)

m
 . 

The higher the frequency, the more likely o
i
 is a mathemati-

cal object. Given a frequency threshold �f ( e.g. 0.8) , for a 
entity name o

i
 , (1) if f (oi) ≥ �f  , it will be inferred as a valid 

mathematical object; (2) if f (oi) ≤ 1 − �f  , it will not be a 
mathematical object; (3) otherwise, we will transform it into 
a question (see Fig. 3e), send it to the crowdsourcing plat-
form and obtain the answers from crowd workers.

sij = JACCARD(oi, oj) =
|oi ∩ oj|

|oi ∪ oj|
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5.2  Extracting Operations and Constraints

Operations and constraints also need to be recognized and 
extracted from every given exercise subset. We also design 
the corresponding user interface on the crowdsourcing plat-
form, shown in Fig. 3b, c. Note that the difference from 
extracting objects is that the workers have to submit not only 
the name of the operation/constraint, but also the type of 
the operands and the result of the operation, or the type of 
the parameters of the constraint. For example, the operation 
“Find the modulus of a complex number” should be submit-
ted as a key-value map:

{
NAME: Complex Modulus,
OPERANDS: [Complex Number],
RESULT: Real Number
}.

Thus, we collect the workers’ answer as sets: 
P = {P1, P2,… , P

m
} and C = {C1, C2,… , C

m
} , where every 

set P
i
 and C

i
 contains several operations and constraints, 

respectively. Here, an operation p is denoted as a tuple (p.
name, p.operands, p.result) and a constraint c (c.name, p.
parameters), where p.operands and c.parameters are both 
unordered list containing the domains of the operands of p and 
the parameters of c. Similar to the concept of type signature in 
programming languages, we define (p.operands, p.result) and 
c.parameters as the signature of p and c, respectively.

Extracting operations and constraints also face the same 
two possible errors as extracting objects. For the second type 
of error (i.e. a submitted entry is actually not an operation/
constraint), we can follow the same approach as above. How-
ever, for the first type of error (i.e. one operation/constraint 
are submitted by several workers with different names), 
because the number of the operations and constraints in 

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 3  User interface designed for extracting entities
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MathGraph is much larger than the mathematical objects, 
and operations and constraints may have various description 
from different workers, simply using the same method above 
will result in too many questions for the workers. Therefore, 
a more efficient method is needed in this case.

We note that two different descriptions can refer to one 
operation/constraint only if their signatures are identical. 
Thus, we design Algorithm 1 to handle duplicated operations 
via crowdsourcing. First, we group these submitted entries 
based on the signature (line 2). Then for each entry in a group, 
we ask a crowdsourcing question to verify whether there is 
already an operation that has the same meaning (lines 11–19). 
If not, it will be considered as a new operation (lines 20–23). 

Algorithm 1: HandlingDuplicatedOperations(P)

Input: P: a set of submitted entries for operations.
Output: Θ: a set of set where each subset

containing submitted entries referring to
the same operations.

1 begin

2 Group all elements in P by their signatures. All
the groups are stored in Σ = {σ1, σ2, · · · };

3 Initialize Θ as empty result set;
4 foreach σi ∈ σ do

5 Initialize Ω as an empty list of list;
6 Randomly choose an entry ê from σi;
7 Initialize ω as an empty list;
8 ω.push(ê);
9 Ω.push(ω);

10 foreach e ∈ σi \ {ê} do

11 flag = True;
12 for i = 1 to Ω.length do

13 e = a random entry in Ω[i];
14 Design question q = “Do e and e

refer to the same operations?”;
15 Upload q to the platform and retrieve

workers’ vote as v;
16 if v == ”yes” then

17 Ω[i].push(e);
18 flag = False;
19 break;

20 if flag then

21 Initialize ω as an empty list;
22 ω.push(e);
23 Ω.push(ω);

24 Θ = Θ ∪ Ω;

25 return Θ

5.3  Extracting Edges

To construct a complete MathGraph, we still need to extract 
the edges. The FLOW edges can be created automatically by 
the submitted signature of the operations and constraints. 
For instance, according to the signature of the operation 
“Complex Modulus”, two FLOW edges (Complex Number, 
Complex Modulus) and (Complex Modulus, Real Number) 
will be added into MathGraph.

However, the DERIVE edges contain extra information, 
so they have to be extracted by crowdsourcing. For every 
ordered pair of the mathematical objects, we design a ques-
tion as shown in Fig. 3f to ask the workers whether there 
is a FLOW edge between these two objects, and retrieve the 
answer from multiple workers’ majority vote.

After extracting all the nodes and edges in MathGraph 
through crowdsourcing, several experts (i.e. people who can 
write code) are asked to program the logical information in 
these nodes and edges, such as the function f in an operation 
node v

p
 (see Sect. 4.1.2). At last, we can construct MathGraph 

from extracted entities by crowds and coded logic by experts.

6  Solving Mathematical Exercises 
with MathGraph

In this section, we propose a framework to solve a math-
ematical exercise using MathGraph. First, we use a semantic 
parser mapping exercise text to the instances, operations and 
constraints, respectively. Then, we solve the constraints and 
update uncertain instances. Finally, we return the answer of 
this exercise.

6.1  Mapping Text in MathGraph

Considering the limited information and expression in the 
mathematical exercises, we can easily use a rule-based 
semantic parser to parse the exercise text and then map them 
to corresponding nodes in MathGraph.

The rule-based semantic parser uses a set of rules to parse 
every sentence of the exercise and recognize the logical rela-
tionship in the text. For example, “Let x and y be complex 
numbers” will be parsed as declaration of two uncertain 
instances; “Find the coordinates of the conjugate complex 
of (i + 1) (i − 1) ” will be parsed as a declaration of a certain 
instance and two operations.

6.1.1  Mapping Instances

With the semantic parser, every instance generated 
from the exercise should have already mapped into the 
corresponding object node. That is, a set of instances 
I = {(x1, X1),… , (x

k
, X

k
)} is generated by parsing the text 

of the exercise, where x
i
 denotes the instance and X

i
 denotes 

the corresponding object node.
Instances are classified as certain instances or uncertain 

instances depending on whether the exercise provide certain 
values or expressions of them. For uncertain instances gener-
ated from text, key properties with unknown value should be 
generated as instances, since they may be used in the opera-
tions and constraints of this exercise. For example, for the 
exercise shown in Fig. 4, x and y are both uncertain instances 
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of object node Complex Number. Therefore, we need to gener-
ate ax, bx, ay and by as four uncertain instances of object node 
real Number, where a

x
 and b

x
 stand for the two key properties 

of x, and a
y
 and by stand for the key properties of y.

6.1.2  Mapping Operations

The semantic parser can also parse out the a set of operations 
from the text. Every operation in it will be aligned to the cor-
responding operation node in MathGraph with its operands, 
trigger the function in the operation node and then finally 
generate a new instance as the output of the operation. 

Algorithm 2: MappingText(t, G)

Input: t: text of the exercise;
G: MathGraph

Output: Icertain: a set of certain instances;
Iuncertain: a set of uncertain instances;
C: a set of constraints;
Sdependency: a set denoting dependencies
of uncertain instances;

1 begin

2 Initialize P as a semantic parser;
3 Icertain, Iuncertain ←

P.mappingInstances(t, G);
4 O ← P.mappingOperations(t, G);
5 C ← P.mappingConstraints(t, G);
6 Let Sdependency be an empty set;
7 for each (x, X) ∈ Iuncertain do

8 for

each key property(p, Xp) ∈ x.keyProperties
do

9 if p is an uncertain instance then

10 Iuncertain ← Iuncertain ∪ {(p, Xp)};
11 Sdependency ← Sdependency ∪{(p, x)};

12 for each (o, (x1, X1), · · · , (xk, Xk)) ∈ O do

13 (y, Y ) = o.f(x1, · · · , xk);
14 if y is a certain instance then

15 Icertain ← Iuncertain ∪ {(y, Y )};
16 else

17 Iuncertain ← Iuncertain ∪ {(y, Y )};
18 C ← S ∪ y.ConstraintSet;
19 for i = 1 to k do

20 if xi is an uncertain instance then

21 Sdependency ←
Sdependency ∪ {(xi, y)};

22 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do

23 if c is a descriptive constraint then

24 c ← c.f(x1, · · · , xk);

25 return Icertain, Iuncertain, C, Sdependency

6.1.3  Mapping Constraints

Similar to mapping operations, for every descriptive con-
straint (c, (x1, X1),… , (x

n
, X

n
)) in the exercise, the semantic 

parser can map it to the corresponding constraint node c with 
some involving instances, trigger the function in the node 
and convert it to several equality/inequality/set constraints.

Also, note that when an uncertain instance is generated, 
some constraints may also be generated according to the con-
straint set of the corresponding object node. After that, we 
gather all the constraints in the exercise as a set for further using.

Algorithm 2 shows the process of mapping text of the 
exercise, where instances are mapped in lines 7–11, opera-
tions are mapped in lines 12–21, and constraints are mapped 
in lines 22–25.

6.2  Solving Uncertain Instances and Constraints

After parsing all the instances and operations in the exercise, 
the answer of the exercise should already be generated as an 
instance (from the text or by an operation). If this instance is a 
certain instance, we can directly return the value of this instance 
as the answer; otherwise, we must deal with these uncertain 
instances and solve the constraints in the exercise to update their 
values and finally retrieve the answer of the exercise.

6.2.1  Reassign Uncertain Instances

First, we need to check every uncertain instance whether it 
can be reassigned to a more specific object node in Math-
Graph by a DERIVE edge. For an uncertain instance i that 
is assigned to an object node v

o
 , we check every outgoing 

DERIVE edge of v
o
 , and if the function of an edge e returns 

true, then we reassign i to the object node that e points to 
and add all the constraints in this node to the constraint set. 
Algorithm 3 shows the pseudocode of this process.

For example, if we have an uncertain instance ΔABC , and 
there is a constraint ∠B = ∠C in the constraint set, then the 
DERIVE edge from TriaNgle to isosCeles TriaNgle should 
return true. So the instance should be reassigned to isos-
Celes TriaNgle, and a new constraint AB = AC should be 
added to the constraint set. 

Algorithm 3: ReassignInstances(G, Iuncertain, C)

Input: G: MathGraph;
Iuncertain: the set of uncertain instances;
C: the constraint set;

1 begin

2 for each instance (x, X) ∈ Iuncertain do

3 for each derive edge (Xe, Ye, fe) ∈ G do

4 if Xe == X and fe(x) == True then

5 C ← C ∪ Ye.ConstraintSet;
6 update (x, X) as (x, Y );

Fig. 4  Parsing the text into nodes in MathGraph



188 T. Zhao et al.

1 3

6.2.2  Organizing Uncertain Instances

Note that for two uncertain instances � and � , there may be 
a dependency relationship between them, which is caused 
because either � is one of the inputs of an operation node and 
� is the output or � is one of the key properties of �.

Thus, we use a graph G
I
= ⟨V

I
, E

I
⟩ to describe depend-

ency of all the uncertain instances, where v ∈ V
I
 is a node 

representing an uncertain instance and e ∈ E
I
 is a directed 

edge representing a dependency relationship of two nodes. 
Note that G

I
 is always a DAG, since there will be no depend-

ency loop in it.
Let S

I
=
{

v|v ∈ V
I
∧ ∀u ∈ V

I
, (u, v) ∉ E

I

}
 denote the set 

containing all node without any incoming edges in G
I
 . It is 

obvious that if all nodes in S
I
 can turn into certain instances, 

the instance corresponding to the answer can be derived to 
a certain instance. Algorithm 4 demonstrates this process. 

Algorithm 4: OrganizeInstances(Iuncertain, Sdependency)

Input: Iuncertain: a set of uncertain instances;
Sdependency: the set denoting dependencies
of uncertain instances;

Output: GI : the graph to organize the uncertain
instances;
SI : a set denoting all instances in GI

without incoming edges;
1 begin

2 Let GI VI , EI be an empty graph;
3 for (x, y) ∈ Sdependency do

4 VI ← VI ∪ {x, y};
5 EI ← EI ∪ {(x, y)};

6 SI ← {v|v ∈ VI ∧ ∀u ∈ VI , (u, v) /∈ EI};
7 return GI , SI

For example, Fig. 5 shows G
I
 of the exercise in Fig. 4, 

where x and y depend on their respective key properties, 
and z = x + y depends on its two operands. In this context, 
SI =

{

ax, bx, ay, by

}

 and the instance corresponding to the 
answer is z.

6.2.3  Organizing and Solving Constraints

After the last step, we now have a set of constraints. 
First, we need to make sure every variable in every con-
straint is in S

I
 . If not, this constraint needs to be rewrit-

ten by using its key properties as the variable. For exam-
ple, for the exercise in Fig. 4, the set of the constraint 
i s  {x + y = 6, xy = 10, ax = ay, bx + by = 0}  .  S i n c e 
x, y ∉ SI , the first two constraints will be rewritten as 
ax + bxi + ay + byi = 6 and (ax + bxi)(ay + byi) = 10.

Now the constraint set includes and formalizes all the 
constraints in the exercise. So we can apply methods of a 
symbolic execution library [16, 26] or some approximation 
algorithms [12, 29] to solve these equations and/or inequali-
ties. Finally, we will get the value (or range of value) of 
every instance in S

I
 . Algorithm 5 shows this process. 

Algorithm 5: ProcessConstraints(C, GI , SI)

Input: C: the constraint set;
GI : the graph for dependency of uncertain
instances;
SI : the set denoting all instances in GI

without incoming edges;
1 begin

2 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do

3 for i = 1 to k do

4 if xi /∈ SI then

5 Replace (xi, Xi) with its key
properties (p1, P1), · · · , (pn, Pn);

6 SolveConstraints(Sconstraint, SI);

6.2.4  Updating Uncertain Instances and Retrieving 

the Answer

After solving all the constraints in the exercise, we need to 
update the value of the rest instances in G

I
 . Since we now 

know the value of instances in S
i
 , we can traverse every 

instance in G
I
 in the topological sorting order and update 

their values in turn. Finally, we return the value of the 
instance corresponding to the answer. Algorithm 6 shows 
the complete process of using MathGraph to solve exercise. 

Algorithm 6: SolvingExercise(t, G)

Input: t: text of the exercise;
G: MathGraph

Output: answer of the exercise
1 begin

2 Icertain, Iuncertain, C,Sdependency ←

MappingText(t, G);
3 Mark the instance corresponding to the answer

as xans;
4 ReassignUncertainInstances(G, Iuncertain, C);
5 GI , SI ←

OrganizeUncertainInstances(Iuncertain, Sdependency);
6 ProcessConstraints(C, SI );
7 Update the value of every node in GI in the

topological sorting order;
8 return value of xans;

axax

bxbx

ayay

byby

x

yy

z

Fig. 5  G
I
 : A DAG to organize the uncertain instances
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7  Experiments

In this section, we conduct extensive experiments on real 
mathematical datasets to evaluate the performance of our 
method.

7.1  Datasets and Experiment Setting

We collect four real-world datasets of mathematical exer-
cises of Chinese high schools, namely Complex, TriaNgle, 
CoNiC and solid. The exercises are stored in plain text, 
and the mathematical expressions are stored in the LaTeX 
format.

• Complex This dataset contains 1526 mathematical exer-
cises related to calculation and derivation of complex 
numbers, including basic algebraic operation, the mod-
ulus and the conjugate of a complex number, Argand 
plane, polar representation, etc.

• TriaNgle This dataset contains 782 mathematical exer-
cises related to solving triangles (using law of sines and 
law of cosines), which includes finding missing sides 
and angles, perimeter, area, radius of the circumscribed 
circle, etc.

• CoNiC This dataset contains 1196 exercises related to 
Conic sections, including calculation and derivation on 
ellipse, hyperbola and parabola.

• solid This dataset contains 653 exercises related to 
solid geometry, which involves a variety of geometries 
in three-dimensional Euclidean space, including pyra-
mids, prisms, etc.

Exercises in the four datasets are categorized into three 
levels (i.e. easy, medium and hard) based on the difficulty 
(which is classified according to the accuracy of many 
high school students). Table 4 shows the number of exer-
cises with different difficulty levels in the datasets.

In the experiments, we use Neo4j [28] as the graph 
database platform to build and index MathGraph. For the 
datasets, we build the knowledge graph manually involv-
ing only the instances, operations and constraints that may 
exist in these exercises. All algorithms are implemented in 
Python 3.7. Sympy [25] is used to do the work of symbolic 
execution. All the experiments are conducted in a machine 
with 2.40 GHz Intel Xeon CPU E52630, 48 GB RAM, 
running Ubuntu 14.04.

7.2  MathGraph Construction

We randomly choose 50% exercises from each dataset 
and use them to construct MathGraph. Those elements 

to be extracted are done by workers on ChinaCrowds1 
[20], which is a user-friendly crowdsourcing platform. 
In the experiment, we set m = 5 . Moreover, for task 
Fig. 3a–c, we pay 5 RMB each. For each task Fig. 3d–f, 
we pay 1 RMB because they are simpler than the above 
tasks. The total cost is 15,480 RMB. We compare with 
the baseline that utilizes 3 experts to do extraction on 
a sampled dataset (due to the limited ability of a single 
expert) on precision, recall and F1-score. The ground 
truth is retrieved by multiple experts proofreading the 
crowdsourcing result.

As shown in Fig. 6a, for all datasets, our crowd-based 
strategy has a much higher recall than the expert-based 
strategy because we use 5 workers to answer a task and 
combine their answers. For the expert-based strategy, each 
expert has to answer a lot of questions, and thus, they can-
not cover so many entities, which results in a low recall. 
For example, on TriaNgle dataset, crowd-based strategy 
has a recall of 89%, which is 20% more than that of expert-
based strategy (68%). On Complex dataset, crowd-based and 
expert-based strategies achieve similar recalls (95% and 
94%, respectively) because the dataset is simple and has a 
small number of entities to be extracted. Therefore, experts 
can also achieve a high recall.

For precision, as shown in Fig. 6b, the expert-based strat-
egy can achieve a high precision because it leverages the 
human’s expertise. However, we can see that our crowd-
based strategy is comparable with the expert-based one 
because we remove the duplicated answers and verify the 
wrong answers. For example, on Complex dataset, both meth-
ods have a precision of 100%. Moreover, on CoNiC dataset, 
crowd-based and expert-based strategies achieve a similar 
precision of 93% and 92%, respectively. Overall, for the 
F1-score, Fig. 6c shows that crowd-based method is better 
than the expert-based one because our method has a much 
higher recall and a comparable precision compare with 
the expert-based solution. For example, on solid dataset, 
crowd-based strategy has a recall of 93%, which is better 
than that of expert-based strategy by 7%.

Table 4  Summary of exercises in the datasets

Easy Medium Hard Total

Complex 685 634 207 1526

TriaNgle 179 470 133 782

CoNiC 486 602 108 1196

solid 217 336 100 653

1 http://www.china crowd s.com/.

http://www.chinacrowds.com/
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7.3  Exercise Solving

We implement a rule-based baseline method as the follow-
ing procedures:

1. We still use a rule-based semantic parser to parse the text 
and extract the information.

2. A large quantity of rules are written in advance to match 
different situations of exercises. We randomly selected 
20% exercises and assign 8 programmers to program 
rules, which can align and solve the exercises in this set. 
Every rule represents an exercise type and has a built-in 
solving process only for this exercise type.

3. Then, these rules are used to solve all exercises. If an 
exercise matches a rule, then we apply the solving pro-
cess of the rule and return the answer.

MathGraph is created by crowdsourcing and proofread by 
experts. It only includes nodes and edges of the four types 
of the exercises in our dataset, containing 89 mathematical 
objects, 723 operations and 875 constraints. Figure 7 shows 
the exercise-solving accuracy on four datasets. We can see 
that in every dataset, our method achieves higher accuracy 
than baseline, e.g. 20% higher accuracy. This result shows 
the effectiveness of solving problems using MathGraph.

Figure 8 demonstrates the exercise-solving accuracy on 
different difficulty levels. From the experiment result, we 
have the following observations. Firstly, as the difficulty 
of the exercises increases, the accuracy of both methods 
decreases. Secondly, for easy exercises, the baseline and our 
method have similar performance, but for medium and hard 
exercises, MathGraph significantly outperforms the base-
line, because our method can use the knowledge graph to 
do mathematical derivation.

The rule-based baseline considers the exercise as a 
whole and solving it according to the logic specified by a 
rule. This means that this method relies on a large amount 
of rules, and the more complex the exercise is, the more 
rules and the higher difficult it needs to write. Therefore, 
this method has a poor performance in hard exercises. 
However, our method extracts the mathematical objects, 
calculations and constraints from these rules and models 
them into a graph, so it can be used for multi-step calcula-
tion and derivation.

(a) Recall (b) Precision (c) F1-score

Fig. 6  Evaluation of the crowd-based entity extraction strategy

Fig. 7  Overall accuracy on four datasets

(a) Dataset Complex (b) Dataset Triangle (c) Dataset Conic (d) Dataset Solid

Fig. 8  Accuracy on different difficulty levels
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8  Conclusion

In this paper, we proposed MathGraph, a knowledge graph 
for automatically solving mathematical exercises. Math-
Graph is specially designed to represent different math-
ematical objects, operations and constraints. Consider-
ing the complexity of the semantics of the mathematical 
exercises, we use crowdsourcing to construct MathGraph. 
Given an exercise, we can use the proposed method to 
solve it with the help of MathGraph and a pre-built seman-
tic parser. Experimental study on four real-world datasets 
demonstrates the accuracy of our method.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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