
Vol.:(0123456789)1 3

Data Science and Engineering (2019) 4:179–192

https://doi.org/10.1007/s41019-019-00098-w

Towards Automatic Mathematical Exercise Solving

Tianyu Zhao1 · Chengliang Chai1 · Yuyu Luo1 · Jianhua Feng1 · Yan Huang2 · Songfan Yang2 · Haitao Yuan1 ·

Haoda Li1 · Kaiyu Li1 · Fu Zhu1 · Kang Pan1

Received: 24 June 2019 / Revised: 13 August 2019 / Accepted: 19 August 2019 / Published online: 6 September 2019

© The Author(s) 2019

Abstract

Knowledge graphs are widely applied in many applications. Automatically solving mathematical exercises is also an interest-
ing task which can be enhanced by knowledge reasoning. In this paper, we design MathGraph, a knowledge graph aiming to
solve high school mathematical exercises. Since it requires fine-grained mathematical derivation and calculation of different
mathematical objects, we design a crowdsourcing-based method to help build MathGraph. MathGraph supports massive
kinds of mathematical objects, operations and constraints which may be involved in exercises. Furthermore, we propose an
algorithm to align a semantically parsed exercise to MathGraph and figure out the answer automatically. Extensive experi-
ments on real-world datasets verify the effectiveness of MathGraph.

Keywords Knowledge graph · Mathematical exercise · Knowledge reasoning · Crowdsourcing

1 Introduction

Currently, large-scale knowledge graphs are widely used in
many real-world applications, such as semantic web search,
question–answer systems, natural language processing and
data analysis. For example, if we ask “What is the highest
mountain?” on a web search engine, it may directly show
the answer “Everest” with the help of a knowledge graph.

Recently, intelligent education has become more and
more popular and automatically resolving mathematical
exercises can help students improve the comprehensive abil-
ity. However, it is rather challenging to automatically resolve
mathematical exercises without knowledge graphs, because
it requires to use complex semantics and extra calculations.
In this paper, we propose MathGraph, a knowledge graph
aiming to solve high school mathematical exercises. Math-
Graph must be specially designed and differentiated from
other knowledge graphs. The reasons are listed as follows:

1. Knowledge in MathGraph belongs to a specific domain
Building MathGraph requires specific mathematical
knowledge. Traditional knowledge graphs are built

based on extensive semantic data, e.g. Wikipedia. How-
ever, it is very hard to get the semantic data for math-
ematical problems.

2. Knowledge in MathGraph is stored in class level rather

than instance level. Most of the traditional knowledge
graphs focus on extracting instances, categories and
relations among instances. For example, a 3-tuple (Bei-
jing, isCaptialOf, China) shows a relation between two
instances. However, in MathGraph, there is no instance in
the origin graph, but only many class-level mathematical
objects (such as Complex Number and ellipse). Only if an
exercise is given, instances will be created accordingly.

3. MathGraph supports mathematical derivation and calcu-

lation. The reasoning process of mathematical problems
is different from other problems, because besides logical
relation, mathematical derivation must be included in the
knowledge graph to solve mathematical exercises.

Moreover, there are numerous mathematical entities that need
to be extracted, and it is very difficult to parse them automati-
cally from the exercise texts. It is too expensive to ask a large
number of experts to extract the entities for us. However, if
we hire a few experts, it is difficult to derive complete entities
in the domain. To address this, we decide to construct Math-
Graph via crowdsourcing. Existing works [4, 24] that focused
on entity extraction of knowledge graph mainly extract entities
from general web pages. However, our entities such as math

 * Tianyu Zhao
 zhaoty17@mails.tsinghua.edu.cn

1 Tsinghua University, Beijing, China
2 TAL Education Group, Beijing, China

http://orcid.org/0000-0002-5225-1763
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00098-w&domain=pdf

180 T. Zhao et al.

1 3

objects, operations and constrains are from mathematical
exercises, which is more complicated and domain-specific.
Therefore, we have to design special tasks for MathGraph.

Thus, in this paper, we focus on designing and building
a knowledge graph MathGraph for resolving mathematical
problems. We also propose an effective algorithm to align
a mathematical problem to MathGraph, and use the aligned
sub-graph to resolve a mathematical exercise. Our contribu-
tions are as follows.

• We specially design the structure of MathGraph to sup-
port mathematical derivation and calculation. We model
different mathematical objects, operations and constraints
in MathGraph. To the best of our knowledge, this is the
first attempt to build a knowledge graph for resolving
mathematical problems.

• We propose an approach to construct MathGraph via
crowdsourcing.

• We propose an algorithm to align a mathematical prob-
lem to MathGraph.

• We design a method to resolve mathematical exercises
with the help of a semantic parser.

• Experimental study shows great performance of Math-
Graph and our proposed method.

Figure 1 gives an overview of the exercise-solving process
with MathGraph. We detail the structure of MathGraph and
the exercise-solving algorithm later.

The rest of this paper is organized as follows. Section 2
introduces some related works. Section 3 introduces some
concepts involved in MathGraph. Section 4 overviews the
structure of MathGraph. Section 5 introduces how to build

MathGraph using crowdsourcing. Section 6 proposes some
algorithms to solve mathematical exercises. Section 7 gives
the experiment results, and we conclude the paper in Sect. 8.

2 Related Work

2.1 Reasoning with Knowledge Graph

Since knowledge graphs can provide well-structured infor-
mation and relations of the entities, it is known to be useful
to do reasoning in many tasks, such as query answering and
relation inference (i.e. to infer missing relations in the knowl-
edge graph [10, 21, 22]). Gu et al. [15] proposed a technique
to answer queries on knowledge graph by “compositional-
izing” a broad class of vector space models, which performs
well on query answering and knowledge graph completion.
Toutanova et al. [32] proposed a dynamic programming algo-
rithm to incorporate all paths in knowledge graph within a
bounded length, and modelled entities and relations in the
compositional path representations. Zhang et al. [35] pre-
sented a deep learning architecture and a variational learn-
ing algorithm, which can handle noise in the question and
do multi-hop reasoning in knowledge graph simultaneously.
Zheng et al. [37] used a large number of binary templates
rather than semantic parsers to query knowledge graph with
natural language. A low-cost technique that can generate a
large number of templates automatically is also proposed.

Our work is different from above works. Firstly, there are
some differences between the structure of MathGraph and
existing knowledge graphs (e.g. Freebase and NELL [3]). Sec-
ondly, to solve a math exercise usually requires multi-step

Fig. 1 Overview of using MathGraph to solve a mathematical exercise

181Towards Automatic Mathematical Exercise Solving

1 3

mathematical derivation, and the derivation procedures need
to be output as the problem-solving process. Thirdly, deri-
vation and calculation should be performed simultaneously
when solving an exercise to retrieve the answer.

2.2 Automatically Solving Mathematical Problems

Automatically solving mathematical problems has been stud-
ied over years. But they only focused on easy problems, e.g.
mathematical problems in primary schools. Kojiri et al. [18]
constructed a mechanism called solution network to auto-
matically generate the answers for mathematical exercises.
The solution network is represented as a tree to describe
inclusive relations of exercises. Tomas et al. [31] proposed a
framework of constraint logic programming to automatically
generate and solve mathematical exercises. This paper pro-
posed to concentrate on the solving procedures rather than
many simple exercise templates so that the generation and
explanation of these exercises are easy. Ganesalingam et al.
[13] proposed a method that solves elementary mathematical
problems using logical derivation and shows solutions which
are made difficult to distinguish from human’s writing.

However, these works all have some limits. For example,
some can solve those problems only involving elementary
math (e.g. set theory, basic algebraic operation) without
deeper theorems; some only support very limited logical
derivation. Thus, in this paper, we present a knowledge
graph to represent as many mathematical entities and logi-
cal relationships as possible.

2.3 Entity Extraction and Knowledge Graph
Construction with Crowdsourcing

Crowdsourcing is widely used to extract entities and knowl-
edge from massive types of data [5, 6, 14, 27, 34]. Chai et al.
[4] focused on collecting entities using crowdsourcing with
low cost and high quality. Dumitrache et al. [11] proposed a
method for collecting medical relation using crowdsourcing.
Seifert et al. [30] presented a method to extract entities from
scientific literature, which further can be used to create an
open knowledge base.

Crowdsourcing is also used to construct, update or inte-
grate knowledge graph, such as Freebase [2]. Xin et al. [33]
proposed a method for subjective knowledge base construc-
tion, which leverages crowd workers to annotate the sub-
jective properties of the instances. McCoy et al. [23] used
crowdsourcing to construct a clinical knowledge base by
identifying relationships between medication pairs. Meng
et al. [24] proposed a framework for large-scale knowledge
base integration through crowdsourcing.

Compared with the conference version [36], we make
the following contributions. Firstly, we design several

user-friendly interfaces to leverage the crowd to build the
MathGraph. Secondly, we design more quality control
methods customized to the MathGraph construction prob-
lem. Thirdly, we conduct extensive experiment to evaluate
the crowd-based method. Experiment results show that our
method can achieve a higher quality than the expert-only
approach while spending not so much money. Fourthly, we
discuss more related works in this manuscript.

3 Preliminaries

In this section, we describe the entities that may appear in
MathGraph, including mathematical objects and instances,
operations and constraints. Table 1 shows the notations used
in this paper.

3.1 Mathematical Object and Instance

A mathematical object is an abstract object which has a defini-
tion and some properties, and can be taken as the target of some
operations or derivation. Note that a mathematical object can be
defined in terms of other objects. A concrete object that satisfies
the definition of the mathematical object is called an instance.

For example, Complex Number can be considered as a
mathematical object:

• Definition A complex number is a number that can be in
the form a + bi , where a and b are both real numbers and
i is the imaginary unit which satisfies i2 = − 1.

• Property example Imaginary part is a property of a com-
plex number. The imaginary part of a complex number
a + bi is b.

• Operation example (a
1
+ b

1
i) ⋅ (a

2
+ b

2
i) = (a

1
a

2
− b

1
b

2
)+

(a
1
b

2
+ a

2
b

1
)i

• Derivation example: If (a
1
+ b

1
i) and (a

2
+ b

2
i) are con-

jugated to each other, then a
1
= a

2
 and b

1
+ b

2
= 0.

Table 1 Notations

Notation Description

G MathGraph

v
o

An object node

v
p

An operation node

v
c

A constraint node

e
DERIVE

A DERIVE edge

e
FLOW

A FLOW edge

O A set of mathematical objects

I A set of mathematical instances

C A set of constraints

G
I

A DAG describing dependency
of all the uncertain instances

182 T. Zhao et al.

1 3

And 2 + 3i and (i + 1)(i − 3) are instances of Complex

Number.
Different mathematical objects should be described as

different structures in MathGraph. Thus, in MathGraph, a
mathematical object is represented with a tuple of key prop-

erties
(

p1, p2,… , p
n

)

 . The key properties of a mathemati-
cal object are those properties that together can form and
describe all the information of an instance of the object.
Table 2 shows examples of key properties of some math-
ematical objects. Two instances of a mathematical object are
equivalent if and only if all the key properties are equivalent.

In a mathematical exercise, instances can be categorized
into certain instances and uncertain instances depending on
whether it contains some uncertain values as its key proper-
ties. An instance is a certain instance if all key properties are
certain, uncertain instance otherwise. For example, a real
number 2.3 and a function f (x) = x + sin(x) are certain; a
complex number 3 + ai (where a ∈ ℝ) and a random triangle
ΔABC are uncertain.

3.2 Operation

Generally, an operation is an action or procedure which,
given one or more mathematical objects as inputs (known
as operands), produces a new object. Simple examples
include addition, subtraction, multiplication, division and
exponentiation. In addition, other procedures such as calcu-
lating the real part of a complex number, the derivative of
a function and the area of a triangle can also be considered
as operations.

3.3 Constraint

A constraint is a description or condition about one or more
instances, at least one of which is an uncertain instance.
There are four types of constraints: descriptive constraints
(e.g. complex numbers x and y are conjugated), equality con-

straints (e.g. a + 2 = b), inequality constraints (e.g. a2 ≤ 5)
and set constraints (e.g. a ∈ ℕ).

Most descriptive constraints cannot be applied directly
to solve the exercise, but can be converted into other three

types of constraints using some definitions or theorems. For
example, if an exercise says “ a + 3i and 7 − bi are a conju-
gate pair”, by the definition of conjugate complex, we can
know that a = 7 and 3 + (− b) = 0 by derivation.

4 The Structure of MathGraph

MathGraph is a directed graph G = ⟨V , E⟩ , in which each
node v ∈ V denotes a mathematical object, an operation or a
constraint, and each edge e ∈ E is the relation of two nodes.

4.1 Nodes

In general, nodes are categorized into three different types:
object nodes, operation nodes and constraint nodes.

4.1.1 Object Nodes

An object node v
o
= (t, P, C) represents a mathematical

object, where t denotes an instance template of this math-
ematical object; P = (P1, P2,… , P

n
) is a tuple indicating

key properties of the mathematical object; and C is a set of
constraints that, according to the definition or some theo-
rems, must be satisfied by this mathematical object. Table 3
shows an example of “triangle” as an object node. We can
see that properties and theorems of triangles are included in
the constraint set.

4.1.2 Operation Nodes

An operation node vp = (X1, X2,… , Xk, Y , f) represents a
k-ary operation, where X

i
(i = 1, 2,… , k) and Y are object

nodes representing the domain of the ith operand x
i
 and the

result of the operation y, respectively, and f is a function that
implements the operation and can be finished by a series
of symbolic execution [1, 9, 17] process using a symbolic
execution library (e.g. SymPy [26], Mathematica [16]) even
if some operands are uncertain instances.

For example, getting the modulus of a complex num-

ber is an unary operation where X
1
= ⟨�������������⟩ ,

Y = ⟨����������⟩ and f can be implemented by the follow-
ing symbolic execution process: (1) get the real part of x

1
 ;

(2) get the imaginary part of x
1
 ; (3) return the squared root

of the sum of (1) squared and (2) squared.

4.1.3 Constraint Nodes

A constraint node vc = (d, X1, X2,… , Xk, f) represents
a descriptive constraints of k instances, where d is the

Table 2 Examples of key properties of different mathematical objects

Mathematical object Example instance Key properties

Complex number ai + b (a, b)

Elementary function f (x) = ⟨ an algebraic
expression about x⟩

⟨The algebraic
expression⟩

Triangle ΔABC (a, b, c,∠A,∠B,∠C)

Line Ax + By + C = 0 (A, B, C)

Ellipse x2

a2
+

y2

b2
= 1

(a, b)

183Towards Automatic Mathematical Exercise Solving

1 3

description of the constraint, X
i
(i = 1, 2,… , k) are object

nodes representing the domain of each involving instance,
and f is a function which maps this descriptive constraint
into several equality constraints, inequality constraints and
set constraints.

For example, a constraint node represents that x
1
 and x

2
 are

a conjugate pair, where X
1
= X

2
= ⟨Complex Number⟩ and f

can be implemented by the following process: (1) get the real
part of x

1
 as a

1
 ; (2) get the real part of x

2
 as a

2
 ; (3) get the

imaginary part of x
1
 as b

1
 ; (4) get the imaginary part of x

2
 as

b
2
 ; (5) return two equality constraints: a

1
= a

2
 and b

1
+ b

2
= 0.

4.2 Edges

There are two types of edges in MathGraph: the DERIVE edges
and the FLOW edges.

4.2.1 The DERIVE Edge

For two object nodes X and Y, there may be a DERIVE edge
e

DERIVE
= (X, Y , f) to indicate a general–special relation-

ship between them, such as Triangle and Isosceles Trian-

gle. If X
DERIVE

�������������������������→ Y , an instance of X can be reassigned as an
instance of Y if certain conditions are met. These conditions
are encapsulated into a function f ∶ X → {False, True} : if
these conditions are met, the function f will return True and
reassign the instance from X to Y; otherwise, it will simply
return False.

For example, there is a DERIVE edge from object node
TriaNgle to isosCeles TriaNgle, where the function f can
be implemented as: (1) if the values of key properties or a
constraint shows that two angles or lengths of two edges of
the origin instance are equal, return an instance of Isosceles

Triangle with the same key properties; (2) otherwise, return
False.

When solving an exercise, reassigning an instance to a
more specific object node will bring more constraints of this
object and help find the answer. For example, for a rhombus
ABCD, if we know that ∠A = 90

◦ , we can infer, by the DERIVE
edge from object node rhombus to square, that ABCD is a
square and has constraints that ∠A = ∠B = ∠C = ∠D = 90

◦.

4.2.2 The FLOW Edge

A FLOW edge e
FLOW

= (X, Y) indicates the flow direction of
instances during the exercise-solving process, which may
only exist from an object node to an operation node, from
an operation node to an object node or from an object node
to a constraint node.

The FLOW edges between object nodes and opera-
tion nodes represent the process of passing instances as

Fig. 2 Example of the FLOW
edges

Table 3 An example of object node: triangle

Mathematical object Triangle

Instance template ΔABC

Key properties (a, b, c, A, B, C)

Constraint set {a, b, c > 0,

0 < A, B, C < 𝜋,

A + B + C = �,

a + b > c, a + c > b, b + c > a,

a

sin A
=

b

sin B
=

c

sin C
,

a
2
= b

2
+ c

2
− 2bc sin A,

b
2
= a

2
+ c

2
− 2ac sin B,

c
2 = a

2 + b
2 − 2ab sin C}

184 T. Zhao et al.

1 3

parameters before the operation and the process of returning
a new instance after it. For example, in Fig. 2, the two FLOW
edges pointing to the operation node “addition” indicate that
this operation takes two instances of complex number as its
input values, and the edge leading from this operation node
indicates that it returns a new instance of complex numbers.

The FLOW edges from object nodes to constraint nodes
also represent the process of passing parameters of the con-
straints. For example, in Fig. 2, the two FLOW edges pointing
to the constraint node “x and y are a conjugate pair” indi-
cates that this constraint takes two complex number as its
input. Note that constraints nodes only convert descriptive
constraints into other types of constraints and generate no
instances, so there are no FLOW edges from a constraint node
to an object node.

In summary, MathGraph is a well-structured graph sup-
porting different mathematical objects, operations and con-
straints. Next, we will discuss how to solve mathematical
exercises using it.

5 MathGraph Construction using
Crowdsourcing

As is mentioned above, MathGraph can be used to solve
mathematical exercises. However, the objects, operations
and constraints in MathGraph need to be extracted and
refined by mathematical logic, so it is very difficult to con-
struct MathGraph automatically. If one or a small group
of people are chosen to create MathGraph manually, it is
highly likely that some entities are missing, incomplete or
incorrect. Therefore, we tackle this problem by leveraging
the power of crowdsourcing to construct and validate the
MathGraph.

Our whole task in this section can be described as fol-
lows. Given a set of mathematical exercises R , we try to
build MathGraph in a crowdsourcing platform (such as
Amazon Mechanical Turk) and crowd workers. First of all,
we need to extract all the mathematical objects, operations
and constraints from the exercises. We randomly partition
the exercise set R into several disjoint subsets {R1, R2,…} ,
where every subset contains no more than k (1 ≤ k ≤ |R|)
exercises. In practice, considering one worker can only han-
dle limited exercises at once, k is recommended to take val-
ues between 5 and 20. Then we assign m crowd workers to
each subset and design a set of user interfaces and questions
to extract the objects, operations and constraints from text.

Quality control is also necessary in this task. Note that
the workers who are familiar with the mathematical con-
cepts and exercises can do a good job. Therefore, the hired
workers need to know some fundamental and simple domain
knowledge of math. To address this, we provide a detail
instruction of the mathematical exercises which aims to

guide the workers. In addition, to block the workers who are
not qualified, we provide a quiz for each incoming worker.
Only the workers who achieve high score can participate in
the following tasks. Furthermore, since the answers still may
contain incorrect or duplicated entities, we need to design
corresponding algorithms to validate them.

5.1 Extracting Objects

The user interface we designed for extracting objects is
shown in Fig. 3a. After workers submit their answers on
the platform, we can obtain a collection of object names
O = {O1, O2,… , O

m
} , where O

i
 contains the names

answered a worker. However, there exists two types of errors
in the collected answers:

1. Duplicate answers Different names are actually referring
to the same mathematical object, e.g. “Complex” and
“Complex Number”, “Point on the plane” and “Point in
two-dimensional space”.

2. Wrong answers Names of other entities are incorrectly
categorized as mathematical objects. For instance, some
worker submit “Complex Conjugate” as a mathematical
object, which is actually an operation.

In order to solve the first type of error, we apply a classic
entity resolution technique [7, 8]. Given a pair of collected
object names {{oi, oj}�oi, oj ∈

⋃m

k=1
Ok} , we can compute

the similarity sij by utilizing any similarity function, e.g.
Jaccard similarity, edit distance. We take Jaccard similarity
as an example here. We first tokenize o

i
 into a set of tokens

and compute Jaccard on token sets as follows.

Then, we select all pairs with similarity no less than a given
similarity threshold (e.g. 0.3) and design questions for each
pair to ask multiple workers whether two names are actually
one object. Figure 3d shows an example of the question.
After that, we can easily determine whether the pair should
be merged into one object by these workers’ (uniform or
weighted [19]) majority vote.

As for the second type of error, we first count the number
of occurrences of every name in O , denoting as c(o

i
) . The

frequency of the name can be further defined as f (oi) =
c(oi)

m
 .

The higher the frequency, the more likely o
i
 is a mathemati-

cal object. Given a frequency threshold �f (e.g. 0.8) , for a
entity name o

i
 , (1) if f (oi) ≥ �f , it will be inferred as a valid

mathematical object; (2) if f (oi) ≤ 1 − �f , it will not be a
mathematical object; (3) otherwise, we will transform it into
a question (see Fig. 3e), send it to the crowdsourcing plat-
form and obtain the answers from crowd workers.

sij = JACCARD(oi, oj) =
|oi ∩ oj|

|oi ∪ oj|

185Towards Automatic Mathematical Exercise Solving

1 3

5.2 Extracting Operations and Constraints

Operations and constraints also need to be recognized and
extracted from every given exercise subset. We also design
the corresponding user interface on the crowdsourcing plat-
form, shown in Fig. 3b, c. Note that the difference from
extracting objects is that the workers have to submit not only
the name of the operation/constraint, but also the type of
the operands and the result of the operation, or the type of
the parameters of the constraint. For example, the operation
“Find the modulus of a complex number” should be submit-
ted as a key-value map:

{
NAME: Complex Modulus,
OPERANDS: [Complex Number],
RESULT: Real Number
}.

Thus, we collect the workers’ answer as sets:
P = {P1, P2,… , P

m
} and C = {C1, C2,… , C

m
} , where every

set P
i
 and C

i
 contains several operations and constraints,

respectively. Here, an operation p is denoted as a tuple (p.
name, p.operands, p.result) and a constraint c (c.name, p.
parameters), where p.operands and c.parameters are both
unordered list containing the domains of the operands of p and
the parameters of c. Similar to the concept of type signature in
programming languages, we define (p.operands, p.result) and
c.parameters as the signature of p and c, respectively.

Extracting operations and constraints also face the same
two possible errors as extracting objects. For the second type
of error (i.e. a submitted entry is actually not an operation/
constraint), we can follow the same approach as above. How-
ever, for the first type of error (i.e. one operation/constraint
are submitted by several workers with different names),
because the number of the operations and constraints in

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 3 User interface designed for extracting entities

186 T. Zhao et al.

1 3

MathGraph is much larger than the mathematical objects,
and operations and constraints may have various description
from different workers, simply using the same method above
will result in too many questions for the workers. Therefore,
a more efficient method is needed in this case.

We note that two different descriptions can refer to one
operation/constraint only if their signatures are identical.
Thus, we design Algorithm 1 to handle duplicated operations
via crowdsourcing. First, we group these submitted entries
based on the signature (line 2). Then for each entry in a group,
we ask a crowdsourcing question to verify whether there is
already an operation that has the same meaning (lines 11–19).
If not, it will be considered as a new operation (lines 20–23).

Algorithm 1: HandlingDuplicatedOperations(P)

Input: P: a set of submitted entries for operations.
Output: Θ: a set of set where each subset

containing submitted entries referring to
the same operations.

1 begin

2 Group all elements in P by their signatures. All
the groups are stored in Σ = {σ1, σ2, · · · };

3 Initialize Θ as empty result set;
4 foreach σi ∈ σ do

5 Initialize Ω as an empty list of list;
6 Randomly choose an entry ê from σi;
7 Initialize ω as an empty list;
8 ω.push(ê);
9 Ω.push(ω);

10 foreach e ∈ σi \ {ê} do

11 flag = True;
12 for i = 1 to Ω.length do

13 e = a random entry in Ω[i];
14 Design question q = “Do e and e

refer to the same operations?”;
15 Upload q to the platform and retrieve

workers’ vote as v;
16 if v == ”yes” then

17 Ω[i].push(e);
18 flag = False;
19 break;

20 if flag then

21 Initialize ω as an empty list;
22 ω.push(e);
23 Ω.push(ω);

24 Θ = Θ ∪ Ω;

25 return Θ

5.3 Extracting Edges

To construct a complete MathGraph, we still need to extract
the edges. The FLOW edges can be created automatically by
the submitted signature of the operations and constraints.
For instance, according to the signature of the operation
“Complex Modulus”, two FLOW edges (Complex Number,
Complex Modulus) and (Complex Modulus, Real Number)
will be added into MathGraph.

However, the DERIVE edges contain extra information,
so they have to be extracted by crowdsourcing. For every
ordered pair of the mathematical objects, we design a ques-
tion as shown in Fig. 3f to ask the workers whether there
is a FLOW edge between these two objects, and retrieve the
answer from multiple workers’ majority vote.

After extracting all the nodes and edges in MathGraph
through crowdsourcing, several experts (i.e. people who can
write code) are asked to program the logical information in
these nodes and edges, such as the function f in an operation
node v

p
 (see Sect. 4.1.2). At last, we can construct MathGraph

from extracted entities by crowds and coded logic by experts.

6 Solving Mathematical Exercises
with MathGraph

In this section, we propose a framework to solve a math-
ematical exercise using MathGraph. First, we use a semantic
parser mapping exercise text to the instances, operations and
constraints, respectively. Then, we solve the constraints and
update uncertain instances. Finally, we return the answer of
this exercise.

6.1 Mapping Text in MathGraph

Considering the limited information and expression in the
mathematical exercises, we can easily use a rule-based
semantic parser to parse the exercise text and then map them
to corresponding nodes in MathGraph.

The rule-based semantic parser uses a set of rules to parse
every sentence of the exercise and recognize the logical rela-
tionship in the text. For example, “Let x and y be complex
numbers” will be parsed as declaration of two uncertain
instances; “Find the coordinates of the conjugate complex
of (i + 1) (i − 1) ” will be parsed as a declaration of a certain
instance and two operations.

6.1.1 Mapping Instances

With the semantic parser, every instance generated
from the exercise should have already mapped into the
corresponding object node. That is, a set of instances
I = {(x1, X1),… , (x

k
, X

k
)} is generated by parsing the text

of the exercise, where x
i
 denotes the instance and X

i
 denotes

the corresponding object node.
Instances are classified as certain instances or uncertain

instances depending on whether the exercise provide certain
values or expressions of them. For uncertain instances gener-
ated from text, key properties with unknown value should be
generated as instances, since they may be used in the opera-
tions and constraints of this exercise. For example, for the
exercise shown in Fig. 4, x and y are both uncertain instances

187Towards Automatic Mathematical Exercise Solving

1 3

of object node Complex Number. Therefore, we need to gener-
ate ax, bx, ay and by as four uncertain instances of object node
real Number, where a

x
 and b

x
 stand for the two key properties

of x, and a
y
 and by stand for the key properties of y.

6.1.2 Mapping Operations

The semantic parser can also parse out the a set of operations
from the text. Every operation in it will be aligned to the cor-
responding operation node in MathGraph with its operands,
trigger the function in the operation node and then finally
generate a new instance as the output of the operation.

Algorithm 2: MappingText(t, G)

Input: t: text of the exercise;
G: MathGraph

Output: Icertain: a set of certain instances;
Iuncertain: a set of uncertain instances;
C: a set of constraints;
Sdependency: a set denoting dependencies
of uncertain instances;

1 begin

2 Initialize P as a semantic parser;
3 Icertain, Iuncertain ←

P.mappingInstances(t, G);
4 O ← P.mappingOperations(t, G);
5 C ← P.mappingConstraints(t, G);
6 Let Sdependency be an empty set;
7 for each (x, X) ∈ Iuncertain do

8 for

each key property(p, Xp) ∈ x.keyProperties
do

9 if p is an uncertain instance then

10 Iuncertain ← Iuncertain ∪ {(p, Xp)};
11 Sdependency ← Sdependency ∪{(p, x)};

12 for each (o, (x1, X1), · · · , (xk, Xk)) ∈ O do

13 (y, Y) = o.f(x1, · · · , xk);
14 if y is a certain instance then

15 Icertain ← Iuncertain ∪ {(y, Y)};
16 else

17 Iuncertain ← Iuncertain ∪ {(y, Y)};
18 C ← S ∪ y.ConstraintSet;
19 for i = 1 to k do

20 if xi is an uncertain instance then

21 Sdependency ←
Sdependency ∪ {(xi, y)};

22 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do

23 if c is a descriptive constraint then

24 c ← c.f(x1, · · · , xk);

25 return Icertain, Iuncertain, C, Sdependency

6.1.3 Mapping Constraints

Similar to mapping operations, for every descriptive con-
straint (c, (x1, X1),… , (x

n
, X

n
)) in the exercise, the semantic

parser can map it to the corresponding constraint node c with
some involving instances, trigger the function in the node
and convert it to several equality/inequality/set constraints.

Also, note that when an uncertain instance is generated,
some constraints may also be generated according to the con-
straint set of the corresponding object node. After that, we
gather all the constraints in the exercise as a set for further using.

Algorithm 2 shows the process of mapping text of the
exercise, where instances are mapped in lines 7–11, opera-
tions are mapped in lines 12–21, and constraints are mapped
in lines 22–25.

6.2 Solving Uncertain Instances and Constraints

After parsing all the instances and operations in the exercise,
the answer of the exercise should already be generated as an
instance (from the text or by an operation). If this instance is a
certain instance, we can directly return the value of this instance
as the answer; otherwise, we must deal with these uncertain
instances and solve the constraints in the exercise to update their
values and finally retrieve the answer of the exercise.

6.2.1 Reassign Uncertain Instances

First, we need to check every uncertain instance whether it
can be reassigned to a more specific object node in Math-
Graph by a DERIVE edge. For an uncertain instance i that
is assigned to an object node v

o
 , we check every outgoing

DERIVE edge of v
o
 , and if the function of an edge e returns

true, then we reassign i to the object node that e points to
and add all the constraints in this node to the constraint set.
Algorithm 3 shows the pseudocode of this process.

For example, if we have an uncertain instance ΔABC , and
there is a constraint ∠B = ∠C in the constraint set, then the
DERIVE edge from TriaNgle to isosCeles TriaNgle should
return true. So the instance should be reassigned to isos-
Celes TriaNgle, and a new constraint AB = AC should be
added to the constraint set.

Algorithm 3: ReassignInstances(G, Iuncertain, C)

Input: G: MathGraph;
Iuncertain: the set of uncertain instances;
C: the constraint set;

1 begin

2 for each instance (x, X) ∈ Iuncertain do

3 for each derive edge (Xe, Ye, fe) ∈ G do

4 if Xe == X and fe(x) == True then

5 C ← C ∪ Ye.ConstraintSet;
6 update (x, X) as (x, Y);

Fig. 4 Parsing the text into nodes in MathGraph

188 T. Zhao et al.

1 3

6.2.2 Organizing Uncertain Instances

Note that for two uncertain instances � and � , there may be
a dependency relationship between them, which is caused
because either � is one of the inputs of an operation node and
� is the output or � is one of the key properties of �.

Thus, we use a graph G
I
= ⟨V

I
, E

I
⟩ to describe depend-

ency of all the uncertain instances, where v ∈ V
I
 is a node

representing an uncertain instance and e ∈ E
I
 is a directed

edge representing a dependency relationship of two nodes.
Note that G

I
 is always a DAG, since there will be no depend-

ency loop in it.
Let S

I
=
{

v|v ∈ V
I
∧ ∀u ∈ V

I
, (u, v) ∉ E

I

}
 denote the set

containing all node without any incoming edges in G
I
 . It is

obvious that if all nodes in S
I
 can turn into certain instances,

the instance corresponding to the answer can be derived to
a certain instance. Algorithm 4 demonstrates this process.

Algorithm 4: OrganizeInstances(Iuncertain, Sdependency)

Input: Iuncertain: a set of uncertain instances;
Sdependency: the set denoting dependencies
of uncertain instances;

Output: GI : the graph to organize the uncertain
instances;
SI : a set denoting all instances in GI

without incoming edges;
1 begin

2 Let GI VI , EI be an empty graph;
3 for (x, y) ∈ Sdependency do

4 VI ← VI ∪ {x, y};
5 EI ← EI ∪ {(x, y)};

6 SI ← {v|v ∈ VI ∧ ∀u ∈ VI , (u, v) /∈ EI};
7 return GI , SI

For example, Fig. 5 shows G
I
 of the exercise in Fig. 4,

where x and y depend on their respective key properties,
and z = x + y depends on its two operands. In this context,
SI =

{

ax, bx, ay, by

}

 and the instance corresponding to the
answer is z.

6.2.3 Organizing and Solving Constraints

After the last step, we now have a set of constraints.
First, we need to make sure every variable in every con-
straint is in S

I
 . If not, this constraint needs to be rewrit-

ten by using its key properties as the variable. For exam-
ple, for the exercise in Fig. 4, the set of the constraint
i s {x + y = 6, xy = 10, ax = ay, bx + by = 0} . S i n c e
x, y ∉ SI , the first two constraints will be rewritten as
ax + bxi + ay + byi = 6 and (ax + bxi)(ay + byi) = 10.

Now the constraint set includes and formalizes all the
constraints in the exercise. So we can apply methods of a
symbolic execution library [16, 26] or some approximation
algorithms [12, 29] to solve these equations and/or inequali-
ties. Finally, we will get the value (or range of value) of
every instance in S

I
 . Algorithm 5 shows this process.

Algorithm 5: ProcessConstraints(C, GI , SI)

Input: C: the constraint set;
GI : the graph for dependency of uncertain
instances;
SI : the set denoting all instances in GI

without incoming edges;
1 begin

2 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do

3 for i = 1 to k do

4 if xi /∈ SI then

5 Replace (xi, Xi) with its key
properties (p1, P1), · · · , (pn, Pn);

6 SolveConstraints(Sconstraint, SI);

6.2.4 Updating Uncertain Instances and Retrieving

the Answer

After solving all the constraints in the exercise, we need to
update the value of the rest instances in G

I
 . Since we now

know the value of instances in S
i
 , we can traverse every

instance in G
I
 in the topological sorting order and update

their values in turn. Finally, we return the value of the
instance corresponding to the answer. Algorithm 6 shows
the complete process of using MathGraph to solve exercise.

Algorithm 6: SolvingExercise(t, G)

Input: t: text of the exercise;
G: MathGraph

Output: answer of the exercise
1 begin

2 Icertain, Iuncertain, C,Sdependency ←

MappingText(t, G);
3 Mark the instance corresponding to the answer

as xans;
4 ReassignUncertainInstances(G, Iuncertain, C);
5 GI , SI ←

OrganizeUncertainInstances(Iuncertain, Sdependency);
6 ProcessConstraints(C, SI);
7 Update the value of every node in GI in the

topological sorting order;
8 return value of xans;

axax

bxbx

ayay

byby

x

yy

z

Fig. 5 G
I
 : A DAG to organize the uncertain instances

189Towards Automatic Mathematical Exercise Solving

1 3

7 Experiments

In this section, we conduct extensive experiments on real
mathematical datasets to evaluate the performance of our
method.

7.1 Datasets and Experiment Setting

We collect four real-world datasets of mathematical exer-
cises of Chinese high schools, namely Complex, TriaNgle,
CoNiC and solid. The exercises are stored in plain text,
and the mathematical expressions are stored in the LaTeX
format.

• Complex This dataset contains 1526 mathematical exer-
cises related to calculation and derivation of complex
numbers, including basic algebraic operation, the mod-
ulus and the conjugate of a complex number, Argand
plane, polar representation, etc.

• TriaNgle This dataset contains 782 mathematical exer-
cises related to solving triangles (using law of sines and
law of cosines), which includes finding missing sides
and angles, perimeter, area, radius of the circumscribed
circle, etc.

• CoNiC This dataset contains 1196 exercises related to
Conic sections, including calculation and derivation on
ellipse, hyperbola and parabola.

• solid This dataset contains 653 exercises related to
solid geometry, which involves a variety of geometries
in three-dimensional Euclidean space, including pyra-
mids, prisms, etc.

Exercises in the four datasets are categorized into three
levels (i.e. easy, medium and hard) based on the difficulty
(which is classified according to the accuracy of many
high school students). Table 4 shows the number of exer-
cises with different difficulty levels in the datasets.

In the experiments, we use Neo4j [28] as the graph
database platform to build and index MathGraph. For the
datasets, we build the knowledge graph manually involv-
ing only the instances, operations and constraints that may
exist in these exercises. All algorithms are implemented in
Python 3.7. Sympy [25] is used to do the work of symbolic
execution. All the experiments are conducted in a machine
with 2.40 GHz Intel Xeon CPU E52630, 48 GB RAM,
running Ubuntu 14.04.

7.2 MathGraph Construction

We randomly choose 50% exercises from each dataset
and use them to construct MathGraph. Those elements

to be extracted are done by workers on ChinaCrowds1
[20], which is a user-friendly crowdsourcing platform.
In the experiment, we set m = 5 . Moreover, for task
Fig. 3a–c, we pay 5 RMB each. For each task Fig. 3d–f,
we pay 1 RMB because they are simpler than the above
tasks. The total cost is 15,480 RMB. We compare with
the baseline that utilizes 3 experts to do extraction on
a sampled dataset (due to the limited ability of a single
expert) on precision, recall and F1-score. The ground
truth is retrieved by multiple experts proofreading the
crowdsourcing result.

As shown in Fig. 6a, for all datasets, our crowd-based
strategy has a much higher recall than the expert-based
strategy because we use 5 workers to answer a task and
combine their answers. For the expert-based strategy, each
expert has to answer a lot of questions, and thus, they can-
not cover so many entities, which results in a low recall.
For example, on TriaNgle dataset, crowd-based strategy
has a recall of 89%, which is 20% more than that of expert-
based strategy (68%). On Complex dataset, crowd-based and
expert-based strategies achieve similar recalls (95% and
94%, respectively) because the dataset is simple and has a
small number of entities to be extracted. Therefore, experts
can also achieve a high recall.

For precision, as shown in Fig. 6b, the expert-based strat-
egy can achieve a high precision because it leverages the
human’s expertise. However, we can see that our crowd-
based strategy is comparable with the expert-based one
because we remove the duplicated answers and verify the
wrong answers. For example, on Complex dataset, both meth-
ods have a precision of 100%. Moreover, on CoNiC dataset,
crowd-based and expert-based strategies achieve a similar
precision of 93% and 92%, respectively. Overall, for the
F1-score, Fig. 6c shows that crowd-based method is better
than the expert-based one because our method has a much
higher recall and a comparable precision compare with
the expert-based solution. For example, on solid dataset,
crowd-based strategy has a recall of 93%, which is better
than that of expert-based strategy by 7%.

Table 4 Summary of exercises in the datasets

Easy Medium Hard Total

Complex 685 634 207 1526

TriaNgle 179 470 133 782

CoNiC 486 602 108 1196

solid 217 336 100 653

1 http://www.china crowd s.com/.

http://www.chinacrowds.com/

190 T. Zhao et al.

1 3

7.3 Exercise Solving

We implement a rule-based baseline method as the follow-
ing procedures:

1. We still use a rule-based semantic parser to parse the text
and extract the information.

2. A large quantity of rules are written in advance to match
different situations of exercises. We randomly selected
20% exercises and assign 8 programmers to program
rules, which can align and solve the exercises in this set.
Every rule represents an exercise type and has a built-in
solving process only for this exercise type.

3. Then, these rules are used to solve all exercises. If an
exercise matches a rule, then we apply the solving pro-
cess of the rule and return the answer.

MathGraph is created by crowdsourcing and proofread by
experts. It only includes nodes and edges of the four types
of the exercises in our dataset, containing 89 mathematical
objects, 723 operations and 875 constraints. Figure 7 shows
the exercise-solving accuracy on four datasets. We can see
that in every dataset, our method achieves higher accuracy
than baseline, e.g. 20% higher accuracy. This result shows
the effectiveness of solving problems using MathGraph.

Figure 8 demonstrates the exercise-solving accuracy on
different difficulty levels. From the experiment result, we
have the following observations. Firstly, as the difficulty
of the exercises increases, the accuracy of both methods
decreases. Secondly, for easy exercises, the baseline and our
method have similar performance, but for medium and hard
exercises, MathGraph significantly outperforms the base-
line, because our method can use the knowledge graph to
do mathematical derivation.

The rule-based baseline considers the exercise as a
whole and solving it according to the logic specified by a
rule. This means that this method relies on a large amount
of rules, and the more complex the exercise is, the more
rules and the higher difficult it needs to write. Therefore,
this method has a poor performance in hard exercises.
However, our method extracts the mathematical objects,
calculations and constraints from these rules and models
them into a graph, so it can be used for multi-step calcula-
tion and derivation.

(a) Recall (b) Precision (c) F1-score

Fig. 6 Evaluation of the crowd-based entity extraction strategy

Fig. 7 Overall accuracy on four datasets

(a) Dataset Complex (b) Dataset Triangle (c) Dataset Conic (d) Dataset Solid

Fig. 8 Accuracy on different difficulty levels

191Towards Automatic Mathematical Exercise Solving

1 3

8 Conclusion

In this paper, we proposed MathGraph, a knowledge graph
for automatically solving mathematical exercises. Math-
Graph is specially designed to represent different math-
ematical objects, operations and constraints. Consider-
ing the complexity of the semantics of the mathematical
exercises, we use crowdsourcing to construct MathGraph.
Given an exercise, we can use the proposed method to
solve it with the help of MathGraph and a pre-built seman-
tic parser. Experimental study on four real-world datasets
demonstrates the accuracy of our method.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Baldoni R, Coppa E, D’Elia DC, Demetrescu C, Finocchi I
(2018) A survey of symbolic execution techniques. ACM Com-
put Surv 51(3):50

 2. Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008)
Freebase: a collaboratively created graph database for structur-
ing human knowledge. In: Proceedings of the ACM SIGMOD
international conference on management of data, SIGMOD
2008, Vancouver, BC, Canada, June 10–12, 2008, pp 1247–1250

 3. Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr E. R,
Mitchell T. M (2010) Toward an architecture for never-ending
language learning. In: Proceedings of the twenty-fourth confer-
ence on artificial intelligence (AAAI 2010), vol 5, Atlanta, p 3

 4. Chai C, Fan J, Li G (2018) Incentive-based entity collection
using crowdsourcing. In: 34th IEEE international conference
on data engineering, ICDE 2018, Paris, France, April 16–19,
2018, pp 341–352

 5. Chai C, Fan J, Li G, Wang J, Zheng Y (2018) Crowd-powered
data mining. CoRR, abs/1806.04968

 6. Chai C, Fan J, Li G, Wang J, Zheng Y (2019) Crowdsourcing
database systems: overview and challenges. In: 35th IEEE inter-
national conference on data engineering, ICDE 2019, Macao,
China, April 8–11, 2019, pp 2052–2055

 7. Chai C, Li G, Li J, Deng D, Feng J (2016) Cost-effective crowd-
sourced entity resolution: a partial-order approach. In: Proceed-
ings of the 2016 international conference on management of
data, SIGMOD conference 2016, San Francisco, CA, USA, June
26–July 01, 2016, pp 969–984

 8. Chai C, Li G, Li J, Deng D, Feng J (2018) A partial-order-based
framework for cost-effective crowdsourced entity resolution.
VLDB J 27(6):745–770

 9. Cousot P, Cousot R (1977) Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages, ACM, pp 238–252

 10. Dongo I, Cardinale Y, Chbeir R (2018) Rdf-f: Rdf datatype
inferring framework. Data Sci. Eng. 3(2):115–135

 11. Dumitrache A, Aroyo L, Welty C (2018) Crowdsourcing ground
truth for medical relation extraction. TiiS 8(2):11:1–11:20

 12. Fletcher R, Leyffer S (2003) Filter-type algorithms for solving
systems of algebraic equations and inequalities. In: High per-
formance algorithms and software for nonlinear optimization,
Springer, pp 265–284

 13. Ganesalingam M, Gowers WT (2017) A fully automatic theorem
prover with human-style output. J Autom Reason 58(2):253–291

 14. Gao Y, Miao X (2018) Query processing over incomplete data-
bases. Synthesis lectures on data management. Morgan & Clay-
pool Publishers, San Rafael

 15. Guu K, Miller J, Liang P (2015) Traversing knowledge graphs in
vector space. In: Proceedings of the 2015 conference on empirical
methods in natural language processing, EMNLP 2015, Lisbon,
Portugal, September 17–21, 2015, pp 318–327

 16. Inc WR (2018) Mathematica, Version 11.3. Champaign, IL
 17. King JC (1976) Symbolic execution and program testing. Com-

mun ACM 19(7):385–394
 18. Kojiri T, Hosono S, Watanabe T (2005) Automatic generation

of answers using solution network for mathematical exercises.
In: International conference on knowledge-based and intelligent
information and engineering systems, Springer, pp 1303–1309

 19. Li G, Chai C, Fan J, Weng X, Li J, Zheng Y, Li Y, Yu X, Zhang X,
Yuan H (2017) CDB: optimizing queries with crowd-based selec-
tions and joins. In: Proceedings of the 2017 ACM international
conference on management of data, SIGMOD conference 2017,
Chicago, IL, USA, May 14–19, 2017, pp 1463–1478

 20. Li G, Chai C, Fan J, Weng X, Li J, Zheng Y, Li Y, Yu X, Zhang X,
Yuan H (2018) CDB: a crowd-powered database system. PVLDB
11(12):1926–1929

 21. Li K, Li G (2018) Approximate query processing: What is new
and where to go? Data Sci Eng 3(4):379–397

 22. Lin P, Song Q, Wu Y (2018) Fact checking in knowledge graphs
with ontological subgraph patterns. Data Sci Eng 3(4):341–358

 23. McCoy AB, Wright A, Laxmisan A, Ottosen MJ, McCoy JA, But-
ten D, Sittig DF (2012) Development and evaluation of a crowd-
sourcing methodology for knowledge base construction: identi-
fying relationships between clinical problems and medications.
JAMIA 19(5):713–718

 24. Meng R, Chen L, Tong Y, Zhang CJ (2017) Knowledge base
semantic integration using crowdsourcing. IEEE Trans Knowl
Data Eng 29(5):1087–1100

 25. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rock-
lin M, Kumar A, Ivanov S, Moore JK, Singh S et al (2017) Sympy:
symbolic computing in python. PeerJ Comput Sci 3:e103

 26. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rock-
lin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig
S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson
F, Pedregosa F, Curry MJ, Terrel AR, Roučka v, Saboo A, Fer-
nando I, Kulal S, Cimrman R, Scopatz A (2017) Sympy: symbolic
computing in python. PeerJ Comput Sci 3:e103

 27. Miao X, Gao Y, Guo S, Liu W (2018) Incomplete data manage-
ment: a survey. Front Comput Sci 12(1):4–25

 28. Neo4j I. Neo4j, Version 1.1.12. https ://neo4j .com/
 29. Polyak BT (1964) Gradient methods for solving equations and

inequalities. USSR Comput Math Math Phys 4(6):17–32
 30. Seifert C, Granitzer M, Höfler P, Mutlu B, Sabol V, Schlegel K,

Bayerl S, Stegmaier F, Zwicklbauer S, Kern R (2013) Crowd-
sourcing fact extraction from scientific literature. In: Human–com-
puter interaction and knowledge discovery in complex, unstruc-
tured, big data: third international workshop, HCI-KDD 2013,
Held at SouthCHI 2013, Maribor, Slovenia, July 1–3, 2013. Pro-
ceedings, pp 160–172

 31. Tomás AP, Leal JP (2003) A clp-based tool for computer aided
generation and solving of maths exercises. In: International

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://neo4j.com/

192 T. Zhao et al.

1 3

symposium on practical aspects of declarative languages,
Springer, pp 223–240

 32. Toutanova K, Lin V, Yih W.-t, Poon H, Quirk C (2016) Compo-
sitional learning of embeddings for relation paths in knowledge
base and text. In: Proceedings of the 54th annual meeting of the
association for computational linguistics, vol 1, pp 1434–1444

 33. Xin H, Meng R, Chen L (2018) Subjective knowledge base con-
struction powered by crowdsourcing and knowledge base. In: Pro-
ceedings of the 2018 international conference on management of
data, SIGMOD conference 2018, Houston, TX, USA, June 10–15,
2018, pp 1349–1361

 34. Yan Q, Huang H, Gao Y, Ying C, Hu Q, Qian T, He Q (2016)
Modeling for noisy labels of crowd workers. In: 18th Asia-Pacific
web conference on APWeb 2016Web technologies and applica-
tions, Suzhou, China, September 23–25, 2016. Proceedings, part
II, pp 227–238

 35. Zhang Y, Dai H, Kozareva Z, Smola AJ, Song L (2018) Vari-
ational reasoning for question answering with knowledge graph.
In: Proceedings of the thirty-second AAAI conference on artificial
intelligence (AAAI-18), pp 6069–6076

 36. Zhao T, Huang Y, Yang S, Luo Y, Feng J, Wang Y, Yuan H,
Pan K, Li K, Li H, et al (2019) Mathgraph: a knowledge graph
for automatically solving mathematical exercises. In: Interna-
tional conference on database systems for advanced applications,
Springer, pp 760–776

 37. Zheng W, Yu JX, Zou L, Cheng H (2018) Question answering
over knowledge graphs: question understanding via template
decomposition. Proc VLDB Endow 11(11):1373–1386

	Towards Automatic Mathematical Exercise Solving
	Abstract
	1 Introduction
	2 Related Work
	2.1 Reasoning with Knowledge Graph
	2.2 Automatically Solving Mathematical Problems
	2.3 Entity Extraction and Knowledge Graph Construction with Crowdsourcing

	3 Preliminaries
	3.1 Mathematical Object and Instance
	3.2 Operation
	3.3 Constraint

	4 The Structure of MathGraph
	4.1 Nodes
	4.1.1 Object Nodes
	4.1.2 Operation Nodes
	4.1.3 Constraint Nodes

	4.2 Edges
	4.2.1 The derive Edge
	4.2.2 The flow Edge

	5 MathGraph Construction using Crowdsourcing
	5.1 Extracting Objects
	5.2 Extracting Operations and Constraints
	5.3 Extracting Edges

	6 Solving Mathematical Exercises with MathGraph
	6.1 Mapping Text in MathGraph
	6.1.1 Mapping Instances
	6.1.2 Mapping Operations
	6.1.3 Mapping Constraints

	6.2 Solving Uncertain Instances and Constraints
	6.2.1 Reassign Uncertain Instances
	6.2.2 Organizing Uncertain Instances
	6.2.3 Organizing and Solving Constraints
	6.2.4 Updating Uncertain Instances and Retrieving the Answer

	7 Experiments
	7.1 Datasets and Experiment Setting
	7.2 MathGraph Construction
	7.3 Exercise Solving

	8 Conclusion
	References

