
Towards Dynamically Adaptive Weather Analysis and Forecasting in LEAD

Beth Plale and Dennis Gannon
Indiana University

Dan Reed
University of North Carolina, Chapel Hill

Sara Graves
University of Alabama Huntsville

Kelvin Droegemeier
Oklahoma University

Bob Wilhelmson
NCSA

Mohan Ramamurthy
UCAR, Unidata

Abstract

LEAD is a large-scale effort to build infrastructure
that allows atmospheric science researchers to dynami-
cally and adaptively respond to weather patterns to pro-
duce better-than-real time predictions of tornadoes and
other ”mesoscale” weather events. In this paper we
discuss an architectural framework that is forming our
thinking about adaptabilty and give early solutions in
workflow and monitoring. 1

1 Introduction

LEAD is a large-scale effort to build infrastructure
that allows atmospheric science researchers to dynami-
cally and adaptively respond to weather patterns to pro-
duce better-than-real time predictions of tornadoes and
other ”mesoscale” weather events. This is accomplished
by middleware that facilitates adaptive utilization of dis-
tributed resources, sensors and workflows, driven by an
adaptive event architecture. LEAD is being constructed
as a service-oriented architecture. As such, component
functionality is encapsulated into individual web ser-
vices that have well defined interfaces. These services
represent both the atomic application tasks as well as
the resource and instrument monitoring agents that drive
the workflow. The project is broad, with significant ef-
fort expended on important efforts such as education and
outreach.

1LEAD is funded by the National Science Foundation under
the following Cooperative Agreements: ATM-0331594 (Oklahoma),
ATM-0331591 (Colorado State), ATM-0331574 (Millersville), ATM-
0331480 (Indiana), ATM-0331579 (Alabama in Huntsville), ATM03-
31586 (Howard), ATM-0331587 (UCAR), and ATM-0331578 (Illinois
at Urbana-Champaign). CASA is funded by the NSF under Cooper-
ative Agreement ECE-0313747 to the University of Massachusetts at
Amherst

The meteorology goal of the project is improved pre-
diction of mesoscale weather phenomena; that is, re-
gional scale weather phenomena such as tornadoes, se-
vere storms and flash floods. The June 1990 outbreak
that spawned 64 tornadoes across the Midwest and Hur-
ricane Ivan that touched land at Pensacola, FL Septem-
ber 2004 are two examples of mesoscale weather phe-
nomena at the larger end. Improved forecasting of these
storms will enable more targeted warnings with longer
advance times. More targeted warnings can reduce the
cost of evacuating a coastline. During Ivan, evacuation
plans were made from St. Charles parish in Louisiana as
far east as Walton county in Florida, a span of 300 miles.

LEAD was funded as a large ITR by the National
Science Foundation to explore state-of-the-art software
artifacts and approaches in the construction of cyber-
infrastructure that can advance the goals of mesoscale
meteorology. Forecasts today are static, that is, they
are routinely generated on a regular schedule, indepen-
dent of current weather conditions. But several factors
are converging to make significant advancement in fore-
casting possible. Technology exists to detect regional
weather conditions in real time. University of Alabama,
Huntsville has developed a class of algorithms that use
data mining classifying techniques to detect mesoscale
phenomena in data streaming from the Weather Surveil-
lance Radar - 1988 Doppler (WSR-88D) occurring in
real time [11].

A sister project to LEAD, the CASA project [9] is de-
veloping small scale Doppler radars of a size that can be
mounted on cell phone towers. These small scale radars
have a 30 km radius and sense at a far higher resolution
and frequency than the WSR-88D Doppler radar. A full
volume scan (approximately 14- 360 deg sweeps) of a
WSR-88D radar takes 5-7 minutes. A CASA radar, on
the other hand, generates a volume scan every 30 sec-
onds. Finally, meteorologists are extending the capa-

bilities of the forecast models for faster than real time
simulation of the weather. In lay terms, the models
are continuously primed with current weather conditions
to reduce time to generate a forecast when mesoscale
weather phenomena actually do arise.

The unique challenge in LEAD is to construct a dis-
tributed service framework that is highly responsive to
external events. The most important events to meteorol-
ogists are those associated with current weather condi-
tions. The service framework must be able to respond
to weather conditions by directing and allocating re-
sources to collect more information and generate fore-
casts. External event arise that affect the systems ability
to meet the demands of forecast time lines. These are
problems in ingesting data, in network failure, in the re-
source availability, and in inadequate model progress for
instance.

Figure 1. “Re-active” system: a mirrored,
first-class system enforcing underlying re-
active guarantees.

In this paper we discuss an architectural framework
that is forming our thinking about adaptability and give
early solutions in workflow and monitoring. We view an
adaptive infrastructure as mirroring the traditional fore-
cast flow, while largely hidden from view. This is illus-
trated in Figure 1. While the active system executes a
very visible sequence of services in the generation of a
forecast, the adaptive system is hidden, monitoring the
behavior of the system, the application, and the exter-
nal environment. Through generating events that can be
understood in the larger context of global behavior, the
active system influences the workflow system to enact
appropriate changes to the system. We introduce a con-
ceptual framework for the adaptive system based on the
notion of the software bus, a network bus style compo-
nent that integrates the adaptive pieces of the system into

a interoperable whole. The actual implementation of the
communication medium is still being defined.

2 LEAD architecture

LEAD is one of a handful of large scale cyberinfras-
tructure projects being undertaken in the world that are
basing their architecture on a service-oriented model. In
a service-oriented architecture, the individual distributed
components are services, their interface is described by
a WSDL definition [4], the service has a lifetime that
can be controlled external to the service, and there is a
single unifying security and communication model.

LEAD is a large system incorporating new and exist-
ing tools by numerous groups. LEAD, as is common in
other large-scale projects, has legacy systems that pro-
vide key functionality for the software infrastructure.
Some of these are consistent with the service-oriented
architecture, some are not. The existing components fall
into the following functional categories:
• forecast model – assimilation, forecast, ensemble,

statistical analysis (ARPS [18], WRF [12])
• weather event detection – on-the-fly data mining

techniques applied to data streams or post mortem
applied to data sets. (ADAM [15])

• data dissemination – (IDD [3], Calder [14])
• data storage and cataloging – OPeNDAP [7],

RLS [2]
• person experiment metadata catalog –

myLEAD [13]
• monitoring – Autopilot [16]
• workflow – gBPEL [8], ogre [8]
Certain legacy pieces are being brought into the ar-

chitecture by wrapping them in a service interface. We
are currently wrapping pieces of the forecast model.
Other components must be worked with as they ex-
ist. For instance, obtaining observational data from its
sources for the LEAD testbed sites would be extremely
difficult without data dissemination systems that operate
on high speed networks. Fortunately IDD and IRaDS
provide this. We treat these systems as existing fixtures
and install a “point-of-presence” grid service in front of
each. For the established OPeNDAP data server we in-
tegrate it into the architecture by sacrificing the dynamic
binding benefit of a SOA. Essentially, we hard-code in-
formation about their location, behavior, and interface.
On the downside, adding another instance of this kind of
service cannot done easily because it requires substan-
tial administrative overhead. These partially-integrated
services also lack the ability to respond to global com-
mands by the workflow as discussed in Section 4.

The LEAD architecture is a mix of persistent and
transient services. Persistent services have and unlim-

2

ited lifetime and service multiple users simultaneously.
Transient services have a limited lifetime. Their lifetime
is determined by the lifetime of the workflow that is car-
rying out a particular task. A workflow can be viewed
as a global0-level thread of execution across the service-
oriented architecture.

3 Forecast Example

Mesoscale meteorology forecasting is both computa-
tionally and data intense. As additional resources as the
Teragrid [1] and CASA radars emerge, the opportunity
to carry out more refined and responsive forecasts exists.
The following example gives a feel for the kind of fore-
casting researchers hope to carry out in the near future.

At 0600hr a research meteorologist kicks off a 2km
resolution, 12 hour forecast over the state of Oklahoma.
The run is an ensemble run in that it consists of 20 copies
of the model each with the physics tweaked slightly dif-
ferently. The runs complete by 0800hr. The final output
of the run is 20 files in a binary format containing tem-
perature, wind, and microphysics. The files undergo sta-
tistical analysis for the purpose of uncovering regions of
uncertainty corresponding to regions in the state where
there are high levels of disagreement across the ensem-
ble versions. These regions can occur when there is too
little data available of the region. See Figure 3.

0600 hr 0800 hr 1000 hr 1200 hr 1400 hr 1600 hr 1800 hr

period of active weather
 1600 hr −− 2100 hr

start run
 1

end run
 1

start run
 2

end run
 2

with additional
data about
regions of
uncertainty

Figure 2. Forecast timeline for the 20-
version ensemble run.

To reduce the level of uncertainty, meteorologists
want to selectively gather more information about the
identified regions. An appropriate outcome of the statis-
tical analysis, then, would be to focus the small NetRad
radars in the regions of uncertainty and have them gather
data over a limited time period to augment the forecast.
Suppose the radars collect data from 0800hr to 1000hr.
The collected data is then converted and assimilated into
the 3D input data grid (third and fourth boxes in Fig-
ure 3.) Another forecast is kicked off at 1000hr. This
time the forecast is a 6 hour forecast, not a 12 hour fore-
cast. As depicted in Figure 2, run 2 finishes at 1200hr.
The ensemble results are analyzed again. This time the
levels of uncertainty have been reduced so as to give the
meteorologist a sufficiently high degree of trust in the
forecast. The cycle has completed by 1200hr, meaning a
viable forecast is generated well in advance of the 1500

- 2100hr window when the majority of severe weather
occurs.

convert to format

forecast run

analysis of
20 resulting files

ensemble
 planning − 20 runs

assimilate into 3D
 grid

suitable for assimil

products
fetch data

CASA radar
ingest

directive
to
CASA
radars
for
specific
data
products

model output

Figure 3. Control flow for the 20-ensemble
run example.

This example exposes a number of challenges in pro-
visioning for runs like these. In the flow graph of the
example given in Figure 3, for run 1, data products used
in the forecast are fetched from where they reside. The
ADAS data assimilation system assumes data products
are located in a named directory on the local file sys-
tem. A forecast might use a dozen or so different data
products drawn from Doppler radar, CASA radar, satel-
lite, buoys, balloons, etc. The converted products are
assimilated into a single 3D grid in box 4. The 3D
grid is passed to an ensemble planner who knows the
whereabouts of the 20 ARPS models with their tweaked
physics.

The forecasts are scheduled on computationally in-
tense resources. A single 27 km resolution, 84 hour
forecast over the US (a CONUS forecast), consumes
60 processors (30 nodes) of a dual processor Pentium
IV Xeon 2.0 GHz cluster at Oklahoma University to
run, and takes 6 hours to complete. A regional fore-
cast running an ensemble will presumably require more
resources, but due to its smaller area, the scale-up is ex-
pected to be less than a factor of 20.

If the analysis step in the first run detects high levels
of uncertainty, it will issue a directive to focus the re-
gional radars on the areas of uncertainty. The gathered
data products are delivered to a directory where they are
converted and assimilated. The assimilation system is
optimized to ingest model results from a prior run, re-
ducing the assimilation time as only the new CASA data
must be processed. The ensemble forecast and analysis
process is repeated, this time to generate a 6 hour fore-

3

cast. The process may be repeated multiple times with
shorter and shorter forecast windows.

It is important to point out that subsequent loops
through the graph in this example are triggered by the
outcome of the analysis results of the prior iteration.
More pointedly, a second loop iteration is initiated based
on meteorological analysis, it is this component that is
the source of a directive to the local radars in the areas
where uncertainty exists.

4 Adaptive System

Adaptive handling in LEAD is driven by three broad
requirements as listed below and discussed in detail in
this section.

• Numerous simultaneous forecasts over limited
resources – it is not inconceivable to have 100 or
more users simultaneously running forecast models
that concurrently request LEAD resources

• Highly heterogeneous and numerous sources of
adaptive events – events that have the potential
to trigger adaptive behavior occur at the environ-
ment level, application level, service level, and at
the hardware level, and

• Expecting the unexpected – workflow can never
anticipate every appropriate orchestration response.

CASA radar
resource
controller

data product
search and stage

ARPS or WRF
scheduling

experiment results
gathering and storage
to myLEAD

forecast results
analysis (statistical
or data mining)

data assimilation
monitoring

ARPS or WRF
monitoring

workflow
monitoring

network and compute
resource monitoring

mesocyclone
detection

global
condition
recogni−
 tion

workflow
enactment

Adaptive
software bus

Execution
bus

full search
approximate results
stop after n results

Figure 4. Active and adaptive software
busses. The latter carries events that ef-
fect adaptation in the system.

To frame our thinking, we view the components of
the traditional forecast system as sitting on a software
“execution bus” where they receive commands from the
workflow engine (see Figure 4.) The components are

web services that are responsive to messages addressed
directly to them and are also responsive to a broadcast
message. A workflow script carries out the ordered
execution. But a large part of the important behavior
in LEAD is reactive, or adaptive. For the system to
be responsive to simultaneously occurring high prior-
ity events, the system employs hidden services that de-
tect, sense, and monitor the environment. These services
sit on a separate software bus that we call the adaptive
bus. The system requirements discussed below drive the
need for a separate bus, and for a single bus that unifies
the diversity of components capable of generating these
urgent events. These detection services are distributed
and gather specialized information close to the source.
The mesocyclone detection service might sit on a radar
data stream (Level II data) at one of the test bed sites,
watching for suspicious behavior. An instance might
also be deployed to examine the 3D assimilated data set
generated by a particular experiment. Monitoring de-
tection components can monitor network and compute
resources, forecasting components, data assimilation, or
the workflow itself.

Simultaneous forecasts over limited resources.
Given the projected scale of LEAD, it is not inconceiv-
able to have 100 or more users simultaneously running
forecast models that concurrently request resources.
Some of these models may be investigations of a serious
weather phenomena. Others might be users tinkering
with a model. How does the workflow engine mediate
access to the distributed resources? In a data driven set-
ting, workflow must arbitrate access to resources based
on some notion of urgency and importance.

Highly heterogeneous and numerous sources of
adaptive events. Events that cause adaptive behavior
can occur at any level in the system: in the environment
when a weather condition arises, in a forecast model
analysis that results in directives to a regional radar for
focused data gathering, at the service layer in response
to inefficiencies in an ongoing workflow execution, and
at the hardware layer in terms of computational and net-
work loads.

To achieve optimal adaptation solutions, entities that
generate adaptive events must have a mechanism to push
those events to a place where they can be considered
and acted upon. Similarly, with heterogeneous compo-
nents generating reactive events, there must be some en-
tity that can arbitrate amongst the competing needs.

Localized detection and reaction such as might be
done by each component is insufficient because it pre-
cludes detection and response to global behavior. For in-
stance, suppose the forecast analysis of Figure 3 identi-
fies two areas of uncertainty over Oklahoma that it wants
to resolve, directing the radars to that region for the next

4

2 hours. But competing interests may need higher prior-
ity. Mesocyclone detection may have detected a weather
phenomena elsewhere that needs to be investigated with
urgency. As another example, the compute resource
monitor may note that a particular forecast run is not
achieving the level of performance that it needs. But ini-
tiating a request for additional resources has to be bal-
anced against the needs of the system. Again, MDA may
have just detected a weather phenomena that needs ur-
gent investigation. In this case, the existing resource-
starved run may not get its additional resources.

This necessitates a general mechanism whereby an
entity can push an event to a location where it becomes
part of the reactive behavior of the system. These events
are markedly different from notifications in terms of the
urgency with which they must be handled. A separate
bus for adaptive events enables a reactive system that
supports rapid recognition of global conditions and com-
peting conditions. It is critical information can then be
used to effect future workflow enactment as quickly as
possible.

Expecting the unexpected. A workflow engine
can never anticipate every appropriate orchestration re-
sponse, but in the absence of a specific plan, the work-
flow may be able to turn to high-level goals that the in-
dividual service-level components can help enforce. For
instance, one high-level goal may be to Minimize end-to-
end latency, that is, minimize the total time from when
an mesoscale event occurs to when a forecast is avail-
able. Improve accuracy of prediction is another. If the
adaptive capability of the overall system makes it easier
to incorporate new data into a forecast, for instance, and
that new data improves the accuracy of the prediction,
then the reactive system has contributed to a more ac-
curate forecast. Finally, a suitable goal may be to max-
imize Most recent weather data. If the forecast system
requires an infusion of the most recent data obtainable,
the reactive system must minimize the time to respond
to this need.

Service level components can contribute to enforcing
high level goals by implementing and exposing different
levels of service. The data search and stage service for
instance could implement three levels of response: full
search where all data resources are searched for relevant
products, approximate results in which case a fast search
returns representative results, or first results where the
search is conducted at the first location only. Faster
searches may result in older or smaller result sets and
consequently less accurate forecasts, but in the face of a
more urgent need, or the need for a forecast completed
as soon as possible, this level of service may be suffi-
cient.

5 Workflow in a reactive system.

Basic workflow enactment. Traditional workflow
systems operate by executing a fixed schedule of tasks.
It is based on a directed acyclic graph of dependencies.
When a task completes, it enables another set of task to
continue start operating. Our basic system operates in
this manner but with a more flexible architecture than
most. A workflow is described in terms of a script de-
scribed in the industry standard ”Business Processing
Execution Language” (BPEL) language. A workflow is
nothing more than a template for execution of a set of
task given a set of parameter bindings. In our case, these
parameter bindings correspond to the location, protocol
and content of a particular input stream or data file for
the workflow template. BPEL allows us to define the
workflow in terms of a sequence of well-planed tasks.
However, it also allows us to define the task in response
to anticipated trigger events. For example, a workflow
may be programmed to understand a several possible
scenarios of weather conditions. The workflow script
can say, ”in case we receive notification ’X’ then execute
scenario X. When we see notification ’Y’ then execute
scenario Y. When instantiated with various initializing
parameter (such as which instrument and event streams
it must listen to) the workflow engine begins its execu-
tion.

The life cycle of a simple LEAD BPEL workflow is
simple. It starts by executing any requests to services
that are available. For example, it may request a resolver
service to locate the current data streams of current
weather conditions. A request to a service is based on
a document-request oriented mode that is unique to our
approach. Rather than using the ”please-do-this-while-I-
wait-for-your-conclusion” remote procedure call (RPC)
mechanism, we use the more modern ”literal document
request” model. The workflow sends a request to an
application service. For example, ”Please execute the
WRF simulation code with these parameters”. Rather
than wait for a response from the WRF engine giving the
results of the computation, the workflow only receives
a ”request acknowledged” response from the WRF en-
gine. However, to proceed to the next task, the workflow
may need to wait for the results.

Each of our application services is programmed to
publish notifications about its status. This uses an im-
plementation of the WS-Eventing web service ”pub-
lish/subscribe” proposed standard. When the WRF ap-
plication service completes execution (or fails in its task)
it publishes a ”notification” of the result. These notifica-
tions are small xml documents that say things like ”sim-
ulation complete. Results are at this URL .”, or ”insuf-
ficient resource to complete execution.” The workflow

5

template must be programmed to respond to any of these
possible scenarios.

Once the workflow is enacted, each task is a request
to a service to complete a task. These services are web
services that respond to the workflow engine that the
task has been executed. However our BPEL engine
saves the state of the workflow in a database. Though
the workflow instance is itself a service, it becomes a
”virtual service” that can reside in the database until a
response is received. This may take minutes or hours.
Depending upon the nature of the result, the workflow
can respond to different scenarios. If so designed, the
workflow can be programmed to wait for months to re-
spond to a specific notification, or series of notifications,
that represent a signal that a particular configuration of
weather conditions has occurred. In this case, if it knows
what to do, it can respond accordingly.

Model for a truly adaptive workflow system. The
scenario as described above is inadequate for addressing
the adaptive needs of the system. It fails to respond to
global conditions and does not have the benefit of low
level events about the resource performance. For this
reason, we are integrating the workflow with the moni-
toring framework discussed in Section 6. The monitor-
ing system can be aware of the traffic on the instrument
channels, of the status of the computational resources,
and of the cost of a computation based on instrumented
applications and a database that can relate patterns of
requests to expected resource needs.

The most fundamental limitation of the workflow ar-
chitecture is that it can only execute workflows that
represent programmed responses to anticipated weather
scenarios. This is ongoing work and includes consider-
ing a balance of the intelligence of the workflow with
the intelligence of each component as discussed earlier.

The notification system that drives LEAD workflow
is a core component of the LEAD Grid middleware. Any
client application or service may listen for notifications,
act on them and publish new notifications. We can think
of the instrument channel as the event bus that is running
in parallel with the workflow service notification bus.

6 Dynamic Detection of System-level Be-
havior

The monitoring infrastructure is based on Autopi-
lot [16], a toolkit for real-time application and resource
monitoring and steering. Autopilot sensor services run-
ning on the resources collect performance information
at periodic intervals. At each stage the workflow en-
gine publishes events about the progress of the work-
flow - e.g: Workflow Started, Task A started, Task A
ended, etc. The global Control/Monitor service (named

“global condition recognition” in Figure 4) acts as a sen-
sor client receiving real-time performance information.
The Control/Monitor service also subscribes to events to
monitor the progress of the workflow allowing for cor-
relation between collected performance information and
the progress of the workflow. It may act as just a simple
monitor writing collected data to a file or a more so-
phisticated scheduling/steering service orchestrating the
workflow. The control service may be an actuator client
steering the workflow based on the performance moni-
toring and adaptation or fault monitoring and recovery.

Codes such as WRF instrumented to capture dynamic
performance data from hardware performance counter
using SvPablo [5] can be streamed to send information
through the Autopilot sensor information. The Con-
trol/Monitor service may be able to additionally use in-
formation from other sensors [17], performance mod-
eling tools to enable dynamic steering of the work-
flow [10].

7 Dynamic Detection of Mesoscale Phe-
nomena

Mesocyclones contain a velocity signature known as
a Rankine Vortex [6], representing incoming and out-
going radial velocity couplets in the WSR-88D data.
For consecutive gate measurements with the same range
and increasing scan angle, this signature is known to
have continuously increasing velocity values followed
by gates with similar values, but opposite signs, that de-
crease in magnitude with increasing scan angle. Identi-
fying shear segments based on this signature is the ap-
proach. As part of a larger suite of algorithms that detect
mesoscale weather conditions, University of Alabama
Huntsville developed the UAH Mesosyclone Detection
Algorithm [11]. It differs from other implementation in
that it uses fast classification techniques to isolate meso-
cylones in large data sets. The identification accuracy
compares favorably to existing MDA algorithms, but
UAH-MDA has the major benefit that the algorithm ex-
ecutes fast enough to efficiently and expeditiously pro-
cess WSR-88D data on the fly.

8 Acknowledgments

The first author would like to thank Jerry Brotzge,
Director of NetRad Operations, University of Oklahoma
for extensive discussion in identifying interoperability
between LEAD and CASA.

6

9 Conclusion

Adaptability is a key goal to LEAD success. The sci-
ence goals will not be achievable without an underly-
ing software infrastructure that manages the unexpected
events arising in the system with the same attention to
detail that it gives to executing a forecast. It is the syn-
ergy between the ’active’ and ’adaptive’ systems that
will bring about the flexibility in the system that is criti-
cal to advancing meteorology research.

References

[1] TeraGrid, url = http://www.teragrid.org, year =
2005.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Cherve-
nak, I. Foster, C. Kesselman, S. Meder, V. Nefe-
dova, D. Quesnel, and S. Tuecke. Secure, efficient
data transport and replica management for high-
performance data-intensive computing. In IEEE
Mass Storage Conference, 2001.

[3] Mitchell S. Baltuch. Unidata’s internet data dis-
tribution (IDD) system: Two years of data de-
livery. In Proceedings of the Thirteenth Interna-
tional Conference on Interactive Information and
Processing Systems for Meteorology, Oceanogra-
phy, and Hydrology, Anaheim California, February
1997.

[4] Erik Christensen, Francisco Curbera, Greg
Meredith, and Sanjiva Weerawarana. Web
services description language (WSDL) 1.1.
www.w3c.org/TR/wsdl, 2001.

[5] Luiz DeRose, Ying Zhang, and Daniel A. Reed.
Svpablo: A multi-language performance analysis
system. In 10th International Conference on Com-
puter Performance Evaluation - Modeling Tech-
niques and Tools - Performance Tools’98, pages
352–355, 1998.

[6] R. J. Donaldson. Vortex signature recognition by
a doppler radar. Journal Applied Meteorology,
9:661–670, 1970.

[7] James Gallagher and George Milkowski. Data
transport within the distributed oceanographic data
system. In Fourth International World Wide Web
Conference, December 1995.

[8] D. Gannon, J. Alameda, O. Chipara, M. Christie,
V. Dukle, L. Fang, M. Farrellee, G. Fox, S. Hamp-
ton, G. Kandaswamy, D. Kodeboyina, C. Moad,

M. Pierce, B. Plale, A. Rossi, Y. Simmhan,
A. Sarangi, A. Slominski, S. Shirasuna, and
T. Thomas. Building grid portal applications from
a web-service component architecture. To appear
in Proceedings of the IEEE, 2004.

[9] K. Droegemeier J. Kurose D. McLaughlin B.
Philips M. Preston S. Sekelsky J. Brotzge, V. Chan-
dresakar. Distributed collaborative adaptive sens-
ing for hazardous weather detection, tracking, and
predicting. In Computational Science - ICCS
2004: 4th International Conference. June.

[10] K. Kennedy, M. Mazina, J. Mellor-Crummey,
K. Cooper, L. Torczon, F. Berman, A. Chien, Holly
Dail, O. Sievert, D. Angulo, I. Foster, D.Gannon,
L. Johnsson, C. Kesselman, J. Dongarra, S. Vad-
hiyar, R. Wolski, R. Aydt, and D. Reed. Toward
a framework for preparing and executing adap-
tive grid programs. In Proceedings of the Inter-
national Parallel and Distributed Processing Sym-
posium Workshop (IPDPS NGS). IEEE Computer
Society Press, April 2002.

[11] Xiang Li, Rahul Ramachandran, John Rushing,
and Sara Graves. Mining nexrad radar data: An
investigative study. In American Meteorology So-
ciety annual meeting, 2004.

[12] J. Michalakes, S. Chen, J. Dudhia, L. Hart,
J. Klemp, J. Middlecoff, and W. Skamarock. De-
velopment of a next generation regional weather
research and forecast model. In Walter Zwiefl-
hofer and Norbert Kreitz, editors, Developments in
Teracomputing: Proceedings of the Ninth ECMWF
Workshop on the Use of High Performance Com-
puting in Meteorology, pages 269–276. World Sci-
entific, 2001.

[13] Beth Plale, Dennis Gannon, Jay Alameda, Bob
Wilhelmson, Shawn Hampton, Al Rossi, and
Kelvin Droegemeier. Active management of scien-
tific data. In IEEE Internet Computing special is-
sue on Internet Access to Scientific Data, volume 9,
pages 27–34, January/February 2005.

[14] Beth Plale and Nithya Vijayakumar. Evaluation of
rate-based adaptivity in joining asynchronous data
streams. In To appear ACM/IEEE 19th Interna-
tional Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE Computer Society Press,
April 2005.

[15] Rahul Ramachandran, Helen Conover, Sara
Graves, and Ken Keiser. Algorithm development

7

and mining (ADaM) system for earth science ap-
plicaitons. In Second conference on artificial intel-
ligence, 80th AMS meeting, January 2000.

[16] Randy Ribler, Jeffrey Vetter, Huseyin Simitci, and
Daniel Reed. Autopilot: Adaptive control of dis-
tributed applications. In 7th IEEE Symposium on
High- Performance Distributed Computing, July
1998.

[17] Rich Wolski. Dynamically forecasting network
performance using the network weather service.
Journal of Cluster Computing, 1:119–132, January
1998.

[18] M. Xue, K.K. Droegemeier, and V. Wong. Ad-
vanced regional prediction system (ARPS) - a mul-
tiscale nonhydrostatic atmospheric simulation and
prediciton tool. part i. model dynamics and verifi-
cation. Meter. and Atmos. Physics, 75:161–193.

8

