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Abstract Understanding causal relationships, or
effective connectivity, between parts of the brain is of
utmost importance because a large part of the brain’s
activity is thought to be internally generated and,
hence, quantifying stimulus response relationships
alone does not fully describe brain dynamics. Past
efforts to determine effective connectivity mostly relied
on model based approaches such as Granger causality
or dynamic causal modeling. Transfer entropy (TE) is
an alternative measure of effective connectivity based
on information theory. TE does not require a model
of the interaction and is inherently non-linear. We
investigated the applicability of TE as a metric in a test
for effective connectivity to electrophysiological data
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based on simulations and magnetoencephalography
(MEG) recordings in a simple motor task. In particular,
we demonstrate that TE improved the detectability of
effective connectivity for non-linear interactions, and
for sensor level MEG signals where linear methods
are hampered by signal-cross-talk due to volume
conduction.
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1 Introduction

Science is about making predictions. To this aim sci-
entists construct a theory of causal relationships be-
tween two observations. In neuroscience, one of the
observations can often be manipulated at will, i.e. a
stimulus in an experiment, and the second observation
is measured, i.e. neuronal activity. If we can correctly
predict the behavior of the second observation we have
identified a causal relationship between stimulus and
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response. However, identifying causal relationships be-
tween stimuli and responses covers only part of neu-
ronal dynamics—a large part of the brain’s activity is
internally generated and contributes to the response
variability that is observed despite constant stimuli
(Arieli et al. 1996). For the case of internally generated
dynamics it is rather difficult to infer a physical causal-
ity because a deliberate manipulation of this aspect
of the system is extremely difficult. Nevertheless, we
can try to make predictions based on the concept of
causality as it was introduced by Wiener (1956). In
Wiener’s definition an improvement of the prediction
of the future of a time series X by the incorporation
of information from the past of a second time series Y
is seen as an indication of a causal interaction from Y
to X. Such causal interactions across brain structures
are also called ‘effective connectivty’ (Friston 1994)
and they are thought to reveal the information flow
associated to neuronal processing much more precisely
than functional connectivity, which only reflects the
statistical covariation of signals as typically revealed by
cross-correlograms or coherency measures. Therefore,
we must identify causal relationships between parts of
the brain, be they single cells, cortical columns, or brain
areas.

Various measures of causal relationships, or effective
connectivity, exist. They can be divided into two large
classes: those that quantify effective connectivity based
on the abstract concept of information of random vari-
ables (e.g. Schreiber 2000), and those based on specific
models of the processes generating the data. Meth-
ods in the latter class are most widely used to study
effective connectivity in neuroscience, with Granger
causality (GC, Granger 1969) and dynamic causal mod-
eling (DCM, Friston et al. 2003) arguably being most
popular. In the next two paragraphs we give a short
overview over the data generation models in GC and
DCM and their specific consequences so that the reader
can appreciate the fundamental differences between
these model based approaches and the information
theoretic approach presented below:

Standard implementations of GC use a linear sto-
chastic model for the intrinsic dynamics of the signal
and a linear interaction.1 Therefore, GC is only well
applicable when three prerequisites are met: (a) The
interaction between the two units under observation
has to be well approximated by a linear description, (b)
the data have to have relatively low noise levels (see

1Historically, however, GC was formulated without explicit as-
sumptions about the linearity of the system (Granger 1969) and
was therefore closely related to Wiener’s formal definition of
causality Wiener (1956).

e.g. Nalatore et al. 2007), and (c) cross-talk between
the measurements of the two signals of interest has to
be low (Nolte et al. 2008). Frequency domain variants
of GC such as the partial directed coherence or the
directed transfer function fall in the same category
(Pereda et al. 2005).

DCM assumes a bilinear state space model (BSSM).
Thus, DCM covers non-linear interactions—at least
partially. DCM requires knowledge about the input to
the system, because this input is modeled as modu-
lating the interactions between the parts of the sys-
tem (Friston et al. 2003). DCM also requires a certain
amount of a priori knowledge about the network of
connectivities under investigation, because ultimately
DCM compares the evidence for several competing a
priori models with respect to the observed data. This a
priori knowledge on the input to the system and on the
potential connectivity may not always be available, e.g.
in studies of the resting-state. Therefore, DCM may not
be optimal for exploratory analyses.

Based on the merits and problems of the methods
described in the last paragraph we may formulate four
requirements that a new measure of effective connec-
tivity must meet to be a useful addition to already
established methods:

1. It should not require the a priori definition of the
type of interaction, so that it is useful as a tool for
exploratory investigations.

2. It should be able to detect frequently observed
types of purely non-linear interactions. This is be-
cause strong non-linearities are observed across
all levels of brain function, from the all-or none
mechanism of action potential generation in neu-
rons to non-linear psychometric functions, such as
the power-law relationship in Weber’s law or the
inverted-U relationship between arousal levels and
response speeds described in the Yerkes-Dodson
law (Yerkes and Dodson 1908).

3. It should detect effective connectivity even if there
there is a wide distribution of interaction delays
between the two signals, because signaling between
brain areas may involve multiple pathways or trans-
mission over various axons that connect two areas
and that vary in their conduction delays (Swadlow
and Waxman 1975; Swadlow et al. 1978).

4. It should be robust against linear cross-talk be-
tween signals. This is important for the analysis of
data recorded with electro- or magnetoencephalog-
raphy, that provide a large part of the available
electrophysiological data today.

The fact that a potential new method should be as
model free as possible naturally leads to the applica-
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tion of information theoretic techniques. Information
theory (IT) sets a powerful framework for the quan-
tification of information and communication (Shannon
1948). It is not surprising then that information the-
ory also provides an ideal basis to precisely formulate
causal hypotheses. In the next paragraph, we present
the connection between the quantification of informa-
tion and communication and Wiener’s definition of
causal interactions (Wiener 1956) in more detail be-
cause of its importance for the justification of using IT
methods in this work.

In the context of information theory, the key mea-
sure of information of a discrete2 random variable is
its Shannon entropy (Shannon 1948; Reza 1994). This
entropy quantifies the reduction of uncertainty obtained
when one actually measures the value of the variable.
On the other hand, Wiener’s definition of causal de-
pendencies rests on an increase of prediction power. In
particular, a signal X is said to cause a signal Y when
the future of signal Y is better predicted by adding
knowledge from the past and present of signal X than
by using the present and past of Y alone (Wiener 1956).
Therefore, if prediction enhancement can be associated
to uncertainty reduction, it is expected that a causality
measure would be naturally expressible in terms of
information theoretic concepts.

First attempts to obtain model-free measures of the
relationship between two random variables were based
on mutual information (MI). MI quantifies the amount
of information that can be obtained about a random
variable by observing another. MI is based on prob-
ability distributions and is sensitive to second and all
higher order correlations. Therefore, it does not rely
on any specific model of the data. However, MI says
little about causal relationships, because of its lack of
directional and dynamical information: First, MI is sym-
metric under the exchange of signals. Thus, it cannot
distinguish driver and response systems. And second,
standard MI captures the amount of information that is
shared by two signals. In contrast, a causal dependence
is related to the information being exchanged rather
than shared (for instance, due to a common drive of
both signals by an external, third source). To obtain

2For a continuous random variable the natural generalization of
Shannon entropy is its differential entropy. Although differential
entropy does not inherit the properties of Shannon entropy as
an information measure, the derived measures of mutual infor-
mation and transfer entropy retain the properties and meaning
they have in the discrete variable case. We refer the reader to
Kaiser and Schreiber (2002) for a more detailed discussion of TE
for continuous variables. In addition, measurements of physical
systems typically come as discrete random variables because of
the binning inherent in the digital processing of the data.

an asymmetric measure, delayed mutual information,
i.e. MI between one of the signals and a lagged version
of another has been proposed. Delayed MI results in
an asymmetric measure and contains certain dynamical
structure due to the time lag incorporated. Neverthe-
less, delayed mutual information has been pointed out
to contain certain flaws such as problems due to a
common history or shared information from a common
input (Schreiber 2000).

A rigorous derivation of a Wiener causal measure
within the information theoretic framework was pub-
lished by Schreiber under the name of transfer entropy
(Schreiber 2000). Assuming that the two time series
of interest X = xt and Y = yt can be approximated by
Markov processes, Schreiber proposed as a measure of
causality to compute the deviation from the following
generalized Markov condition

p(yt+1|yn
t , xm

t ) = p(yt+1|yn
t ) , (1)

where xm
t = (xt, ..., xt−m+1), yn

t = (yt, ..., yt−n+1), while
m and n are the orders (memory) of the Markov
processes X and Y, respectively. Notice that Eq. (1)
is fully satisfied when the transition probabilities or
dynamics of Y is independent of the past of X, this is
in the absence of causality from X to Y. To measure
the departure from this condition (i.e. the presence
of causality), Schreiber uses the expected Kullback-
Leibler divergence between the two probability distri-
butions at each side of Eq. (1) to define the transfer
entropy from X to Y as

T E (X → Y)

=
∑

yt+1,yn
t ,xm

t

p(yt+1, yn
t , xm

t ) log
(

p(yt+1|yn
t , xm

t )

p(yt+1|yn
t )

)
, (2)

Transfer entropy naturally incorporates directional
and dynamical information, because it is inherently
asymmetric and based on transition probabilities. In-
terestingly, Paluš has shown that transfer entropy can
be rewritten as a conditional mutual information (Paluš
2001; Hlavackova-Schindler et al. 2007).

The main convenience of such an information the-
oretic functional designed to detect causality is that,
in principle, it does not assume any particular model
for the interaction between the two systems of interest,
as requested above. Thus, the sensitivity of transfer
entropy to all order correlations becomes an advan-
tage for exploratory analyses over GC or other model
based approaches. This is particularly relevant when
the detection of some unknown non-linear interactions
is required.
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Here, we demonstrate that transfer entropy does in-
deed fulfill the above requirements 1–4 and is therefore
a useful addition to the available methods for the quan-
tification of effective connectivity, when used as a met-
ric in a suitable permutation test for independence. We
demonstrate its ability to detect purely non-linear in-
teractions, its ability to deal with a range of interaction
delays, and its robustness against linear cross-talk on
simulated data. This latter point is of particular interest
for non-invasive human electrophysiology using EEG
or MEG. The robustness of TE against linear cross-
talk in the presence of noise, has to our knowledge not
been investigated before. We test transfer entropy on a
variety of simulated signals with different signal gener-
ation dynamics, including biologically plausible signals
with spectra close to 1/f. We also investigate a range of
linear and purely non-linear coupling mechanisms. In
addition, we demonstrate that transfer entropy works
without specifying a signal model, i.e. that requirement
1 is fulfilled. We extend earlier work (Hinrichs et al.
2008; Chávez et al. 2003; Gourvitch and Eggermont
2007) by explicitly demonstrating the applicability of
transfer entropy for the case of linearly mixed signals.

2 Methods

The method section is organized in four main parts. In
the first part we describe how to compute TE numeri-
cally. As several estimation techniques could be applied
for this purpose we quickly review these possibilities
and give the rationale for our particular choice of es-
timator. In the second part, we describe two particu-
lar problems that arise in neuroscience applications—
delayed interactions, and observation of the signals of
interest by measurements that only represent linear
mixtures of these signals. The third part provides details
on the simulation of test cases for the detection of
effective connectivity via TE. The last part contains
details of the MEG recordings in a self-paced finger-
lifting task that we chose as a proof-of-concept for the
analysis of neuroscience data.

2.1 Computation of transfer entropy

Transfer entropy for two observed time series xt and yt

can be written as

T E (X → Y)

=
∑

yt+u,y
dy
t ,xdx

t

p
(

yt+u, ydy
t , xdx

t

)
log

p
(

yt+u|ydy
t , xdx

t

)

p
(

yt+u|ydy
t

) , (3)

where t is a discrete valued time-index and u denotes
the prediction time, a discrete valued time-interval. ydy

t

and xdx
t are dx- and dy-dimensional delay vectors as

detailed below. An estimator of the transfer entropy
can be obtained via different approaches (Hlavackova-
Schindler et al. 2007). As with other information-
theoretic functionals, any estimate shows biases and
statistical errors which depend on the method used and
the characteristics of the data (Hlavackova-Schindler
et al. 2007; Kraskov et al. 2004). In some applications
the magnitude of such errors is so large that it prevents
any meaningful interpretation of the measure. To our
purposes, it is crucial then to use a proper estimator that
is as accurate as possible under the specific and severe
constraints that most neuronal data-sets present and to
complement it with an appropriate statistical test. In
particular, a quantifier of transfer entropy apt for neu-
roscience applications should cope with at least three
difficulties. First, the estimator should be robust to
moderate levels of noise. Second, the estimator should
rely only on a very limited number of data samples. This
point is particularly restrictive since relevant neuronal
dynamics typically unfolds over just a few hundred of
milliseconds. And third, due to the need to reconstruct
the state space from the observed signals, the estimator
should be reliable when dealing with high-dimensional
spaces. Under such restrictive conditions, to obtain a
highly accurate estimator of TE is probably impossible
without strong modelling assumptions. Unfortunately,
strong modelling assumptions require specific informa-
tion which is typically not available for neuroscience
data. Nevertheless, some very general and biophysi-
cally motivated assumptions are available that enable
the use of particular kernel-based estimators (Victor
2002). Here, we build on this framework to derive
a data-efficient estimator, detailed below. Even using
this improved estimator inaccuracies in estimation are
unavoidable, specially for the restrictive conditions
commented above, and it is necessary to evaluate the
statistical significance of the TE measures, i.e. we use
TE as a statistic measuring dependency of two time se-
ries and test against the null hypothesis of independent
time series. Since no parametric distribution of errors
is known for TE, one needs suitable surrogate data
to test the null hypothesis of independent time series
(‘absence of causality’). Suitable in this context means
that the surrogate data should be prepared such that
the causal dependency of interest is destroyed by con-
structing the surrogates but trivial dependencies of no
interest are preserved. It is the particular combination
of a data efficient estimator and a suitable statistical test
that forms the core part of this study and its contribu-
tion to the field of effective connectivity analysis.
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In the next subsection we detail both, how to obtain
an data-efficient estimation of Eq. (3) from the raw
signals, and a statistical significance analysis based on
surrogate data.

2.1.1 Reconstructing the state space

Experimental recordings can only access a limited num-
ber of variables which are more or less related to the
full state of the system of interest. However, sensible
causality hypotheses are formulated in terms of the
underlying systems rather than on the signals being
actually measured. To partially overcome this prob-
lem several techniques are available to approximately
reconstruct the full state space of a dynamical sys-
tem from a single series of observations (Kantz and
Schreiber 1997).

In this work, we use a Takens delay embedding
(Takens 1981) to map our scalar time series into tra-
jectories in a state space of possibly high dimension.
The mapping uses delay-coordinates to create a set
of vectors or points in a higher dimensional space ac-
cording to

xd
t =(x (t) , x (t−τ) , x (t−2τ) , ..., x (t−(d−1) τ )) . (4)

This procedure depends on two parameters, the di-
mension d and the delay τ of the embedding. While
there is an extensive literature on how to choose
such parameters, the different methods proposed are
far away from reaching any consensus (Kantz and
Schreiber 1997). A popular option is to take the delay
embedding τ as the auto-correlation decay time (act)
of the signal or the first minimum (if any) of the auto-
information. To determine the embedding dimension,
the Cao criterion offers an algorithm based on false
neighbors computation (Cao 1997). However, alter-
natives for non-deterministic time-series are available
(Ragwitz and Kantz 2002).

The parameters d and τ considerably affect the out-
come of the TE estimates. For instance, a low value
of d can be insufficient to unfold the state space of
a system and consequently degrade the meaning of
any TE measure, as will be demonstrated below. On
the other hand, a too large dimensionality makes the
estimators less accurate for a given data length and sig-
nificantly enlarges the computing time. Consequently,
while we have used the recipes described above to
orient our search for good embedding parameters, we
have systematically scanned d and τ to optimize the
performance of TE measures.

2.1.2 Estimating the transfer entropy

After having reconstructed the state spaces of any pair
of time series, we are now in a position to estimate
the transfer entropy between their underlying systems.
We proceed by first rewriting Eq. (3) as sum of four
Shannon entropies according to

T E (X → Y) = S
(

ydy
t , xdx

t

)
− S

(
yt+u, ydy

t , xdx
t

)

+ S
(

yt+u, ydy
t

)
− S

(
ydy

t

)
. (5)

Thus, the problem amounts to computing the
different joint and marginal probability distributions
implicated in Eq. (5). In principle, there are many ways
to estimate such probabilities and their performance
strongly depends on the characteristics of the data to
be analyzed. See Hlavackova-Schindler et al. (2007) for
a detailed review of techniques. For discrete processes,
the probabilities involved can be easily determined by
the frequencies of visitation of different states. For
continuous processes, the case of main interest in this
study, a reliable estimation of the probability densities
is much more delicate since a continuous density has
to be approximated from a finite number of samples.
Moreover, the solution of coarse-graining a continuous
signal into discrete states is hard to interpret unless
the measure converges when reducing the coarsening
scale. In the following, we reason for our choice of the
estimator and describe its functioning.

A possible strategy for the design of an estimator
relies on finding the parameters that best fit the sam-
ple probability densities into some known distribution.
While computationally straightforward such approach
amounts to assuming a certain model for the proba-
bility distribution which without further constraints is
difficult to justify. From the nonparametric approaches,
fixed and adaptive histogram or partition methods
are very popular and widely used. However, other
nonparametric techniques such as kernel or nearest-
neighbor estimators have been shown to be more data
efficient and accurate while avoiding certain arbitrari-
ness stemming from binning (Victor 2002; Kaiser and
Schreiber 2002). In this work we shall use an estimator
of the nearest-neighbor class.

Nearest-neighbor techniques estimate smooth prob-
ability densities from the distribution of distances of
each sample point to its k-th nearest neighbor. Conse-
quently, this procedure results in an adaptive resolution
since the distance scale used changes according to the
underlying density. Kozachenko-Leonenko (KL) is an
example of such a class of estimators and a standard
algorithm to compute Shannon entropy (Kozachenko
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and Leonenko 1987). Nevertheless, a naive approach
of estimating TE via computing each term of Eq. (5)
from a KL estimator is inadequate. To see why, it is
important to notice that the probability densities in-
volved in computing TE or MI can be of very different
dimensionality (from 1 + dx up to 1 + dx + dy for the
case of TE). For a fixed k, this means that different dis-
tance scales are effectively used for spaces of different
dimension. Consequently, the biases of each Shannon
entropy arising from the non-uniformity of the distrib-
ution will depend on the dimensionality of the space,
and therefore, will not cancel each other.

To overcome such problems in mutual information
estimates, Kraskov, Stögbauer, and Grassberger have
proposed a new approach (Kraskov et al. 2004). The
key idea is to use a fixed mass (k) only in the higher
dimensional space and project the distance scale set
by this mass into the lower dimensional spaces. Thus,
the procedure designed for mutual information sug-
gests to first determine the distances to k-th nearest
neighbors in the joint space. Then, an estimator of MI
can be obtained by counting the number of neighbors
that fall within such distances for each point in the
marginal space. The estimator of MI based on this
method displays many good statistical properties, it
greatly reduces the bias obtained with individual KL
estimates, and it seems to become an exact estimator
in the case of independent variables. For these reasons,
in this work we have followed a similar scheme to
provide an data-efficient sample estimate for transfer
entropy (Gomez-Herrero et al. 2010). Thus, we have
obtained an estimator that permits us, at least partially,
to tackle some of the main difficulties faced in neuronal
data sets mentioned in the beginning of the Methods
section. In summary, since the estimator is more data
efficient and accurate than other techniques (especially
those based on binning), it allows to analyze shorter
data sets possibly contaminated by small levels of noise.
At the same time, the method is especially geared to
handle the biases of high dimensional spaces naturally
occurring after the embedding of raw signals.

As to computing time, this class of methods spends
most of resources in finding neighbors. It is then highly
advisable to implement an efficient search algorithm
which is optimal for the length and dimensionality of
the data to be analyzed (Cormen et al. 2001). For the
current investigation, the algorithm was implemented
with the help of OpenTSTool (Version1.2 on Linux
64 bit; Merkwirth et al. 2009). The full set of methods
applied here is available as an open source MATLAB
toolbox (Lindner et al. 2009).

In practice, it is important to consider that this kernel
estimation method carries two parameters. One is the

mass of the nearest-neighbors search (k) which controls
the level of bias and statistical error of the estimate.
For the remainder of this manuscript this parameter
was set to k = 4, as suggested in Kraskov et al. (2004),
unless stated otherwise. The second parameter refers
to the Theiler correction which aims to exclude au-
tocorrelation effects from the density estimation. It
consists of discarding for the nearest-neighbor search
those samples which are closer in time to a reference
point than a given lapse (T). Here, we chose T = 1 act,
unless stated otherwise. In general, it means that even
though TE does not assume any particular model, its
numerical estimation relies on at least five different pa-
rameters; the embedding delay (τ ) and dimension (d),
the mass of the nearest neighbor search (k), the Theiler
correction window (T), and the prediction time (u).
The latter accounts for non-instantaneous interactions.
Specifically it reflects that in that case an increment of
predictability of one signal thanks to the incorporation
of the past of others should only occur for a certain
latency or prediction time. Since axonal conduction
delays among remote areas can amount to tens of
milliseconds (Swadlow and Waxman 1975; Swadlow
1994), its incorporation for a sensible causality analysis
of neuronal data sets is important for the results as we
shall see below.

2.1.3 Signif icance analysis

To test the statistical significance of a value for TE
obtained we used surrogate data. In general, generating
surrogate data with the same statistical properties as
the original data but selectively destroying any causal
interaction is difficult. However, when the data set has
a trial structure it is possible to reason that shuffling
trials generates suitable surrogate data sets for the
absence of causality hypothesis if stationarity and trial
independency are assured. On these data we have then
used a permutation test (∼19,000 permutations) on
the unshuffled and shuffled trials to obtain a p-value.
P-values below 0.05 were considered significant. Where
necessary a correction of this threshold for multiple
comparisons was applied using the false discovery rate
(FDR, q < 0.05; Genovese et al. 2002).

2.2 Particular problems in neuroscience data:
instantaneous mixing and delayed interactions

Neuroscience data have specific characteristics that
challenge a simple analysis of effective connectivity.
First, the interaction may involve large time delays of
unknown duration and, second, the data generated by
the original processes may not be available but only
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measurements that represent linear mixtures of the
original data—as is the case in EEG and MEG. In this
section we describe a number of additional tests that
may help to interpret the results obtained by computing
TE values from these types of neuroscience data.

Tests for instantaneous linear mixing and for multiple
noisy observations of a single source Instantaneous,
linear mixing of the original signals by the measure-
ment process as is always present in MEG and EEG
data. This may result in two problems: First, linear
mixing may reduce signal asymmetry and, thus, make
it more difficult to detect effective connectivity of the
underlying sources. This problem is mainly one of
reduced sensitivity of the method and maybe dealt
with, e.g. by increasing the amount of data. A second
problem arises when a single source signal with an
internal memory structure is observed multiple times
on different channels with individual channel noise. As
demonstrated before (Nolte et al. 2008) this latter case
can result in false positive detection of effective con-
nectivity for methods based on Wiener’s definition of
causality (Wiener 1956). This problem is more severe,
because it reduces the specificity of the method. As
an example of this problem think of an AR process of
order m, s(t)

s(t) =
m∑

i=1

αis(t − i) + ηs(t) (6)

that is mixed with a mixing parameter ε onto two sensor
signals X ′, Y ′ in the following way

X ′(t) = s(t) , (7)

Y ′(t) = (1 − ε)s(t) + εηY , (8)

where the dynamics for Y ′ can be rewritten as

Y ′(t) = (1 − ε)

m∑

i=1

αi X ′(t − i) + (1 − ε)ηs + εηY . (9)

In this case TE will identify a causal relationship be-
tween X ′ and Y ′ as it detects the relationship between
the past of X ′ and the present X ′ that is contained in Y ′
as (1 − ε)ηs. Therefore, we implemented the following
additional test (‘time-shift test’) to avoid false positive
reports for the case of instantaneous, linear mixing:
We shifted the time series for X ′ by one sample into
the past X ′′(t) ←↩ X ′(t + 1) such that a potential in-
stantaneous mixing becomes lagged and thereby causal
in Wiener’s sense. For instantaneous mixing processes
TE values increase for the interaction from the shifted
time series X ′′(t) to Y ′ compared to the interaction
from the original time series X ′(t) to Y ′. Therefore,

an increase of this kind may indicate the presence of
instantaneous mixing. The actual shift test implements
the null hypothesis of instantaneous mixing and the
alternative hypothesis of no instantaneous mixing in the
following way:

H0 : T E(X ′′(t) → Y ′) ≥ T E(X ′(t) → Y ′)

H1 : T E(X ′′(t) → Y ′) < T E(X ′(t) → Y ′) (10)

If the null hypothesis of instananeous mixing is not
discarded by this test, i.e. if TE values for the original
data are not significantly larger than those for the
shifted data, then we have to discard the hypothesis of
a causal interaction from X ′ to Y ′. Therefore, when
data potentially contained instantaneous mixing, we
tested for the presence of instantaneous mixing before
proceeding to test the hypothesis of effective connec-
tivity. More specifically, this test was applied for the
instantaneously mixed simulation data (Figs. 4, 5, 6)
and the MEG data (Fig. 8). In general, we suggest to use
this test, whenever the data in question may have been
obtained via a measurement function that contained
linear, instantaneuos mixing.

A less conservative approach to the same problem
would be to discard data for TE analysis only when we
have significant evidence for the presence of instanta-
neous mixing. In this case the hypotheses would be:

H0 : T E(X ′′(t) → Y ′) ≤ T E(X ′(t) → Y ′)

H1 : T E(X ′′(t) → Y ′) > T E(X ′(t) → Y ′) (11)

In this case we would proceed analysing the data if
we did not have to reject H0. For the remainder of
this manuscript, however, we stick to testing the more
conservative null hypothesis presented in Eq. (10).

Delayed interactions, Wiener’s def inition of causality,
and choice of embedding parameters This paragraph
introduces a difficulty related to Wiener’s definition
of causality. As described above, non-zero TE values
can be directly translated into improved predictions in
Wiener’s sense by interpreting the terms in Eq. (2) as
transition probabilities, i.e. as information that is useful
for prediction. TE quantifies the gain in our knowledge
about the transition probabilities in one system Y, that
we obtain if we condition these probabilities on the
past values of another system X. It is obvious that this
gain, i.e. the value of TE, can be erroneously high,
if the transition probabilities for system Y alone are
not evaluated correctly. We now describe a case where
this error is particularly likely to occur: Consider two
processes with lagged interactions and long autocorre-
lation times. We assume that system X drives Y with an
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interaction delay δ (Fig. 1). A problem arises if we test
for a causal interaction from Y to X, i.e. the reverse
direction compared to the actual coupling, and do not
take enough care to fully capture the dynamics of X via
embedding. If for example the embedding dimension d
or the embedding delay τ was chosen too small, then
some information contained in the past of X is not
used although it would improve (auto-) prediction. This
information is actually transferred to Y via the delayed
interaction from X to Y. It is available in Y with a delay
δ, and therefore, at time-points were data from Y is
used for the prediction of X. As stated before this infor-
mation is useful for the prediction of X. Thus, inclusion
of Y will improve prediction. Hence, TE values will be

non-zero and we will wrongly conclude that process Y
drives process X.

2.3 Simulated data

We used simulated data to test the ability of TE to
uncover causal relations under different situations rel-
evant to neuroscience applications. In particular, we al-
ways considered two interacting systems and simulated
different internal dynamics (autoregressive and 1/ f
characteristics), effective connectivity (linear, thresh-
old and quadratic coupling), and interaction delays (sin-
gle delay and a distribution of delays). In addition, we
simulated linear instantaneous mixing processes during

Y
(target)

X
(source)

r(
X

(u
),

X
(u

-t
))

0

delay δ

uτ τ

dused = 3

Y    X ?

Fig. 1 Illustration of false positive effective connectivity due to
insufficient embedding for delayed interactions. Source signal
X drives target signal Y with a delay δ. The internal memory
of process X is reflected in the slowly decaying autocorrelation
function (top). For the evaluation of TE from Y to X, X is
embedded for auto-prediction with d = 3 and τ , as indicated by
the dark gray box. The data point of X that is to be predicted
with prediction time u is indicated by the star shaped symbol.
Data points used for auto-prediction are indicated by f illed circles
on signal X. Data points used for cross-prediction from Y to X
are indicated by f illed circles on signal Y. Due to the delayed

interaction from X to Y information about X earlier than the
embedding time gets transferred from X to Y where it gets
included in the embedding (open circle). Y contains information
the history of X that is useful for predicting X (see open circle,
autocorrelation curve) but not contained in the embedding used
on X. Hence, inclusion of Y will improve the prediction of X and
false positive effective connectivity is found. Introducing a larger
embedding dimension or or larger embedding delay, incorporates
this information into the embedding of X. Examples of this effect
can be found in Tables 1 and 2
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measurement, because of their relevance for EEG and
MEG.

2.3.1 Internal signal dynamics

We have simulated two types of complex internal signal
dynamics. In the first case, an autoregressive process
of order 10, AR(10), is generated for each system. The
dynamics is then given by

x(t + 1) =
9∑

i=0

αix(t − i) + ση(t) , (12)

where the coefficients αi are drawn from a normalized
Gaussian distribution, the innovation term η represents
a Gaussian white noise source, and σ controls the
relative strength of the noise contribution. Notice, that
we use here the typical notation in dynamical systems
where the innovation term η(t) is delayed one unit with
respect the output x(t + 1).

As a second case, we have considered signals with a
1/ f θ profile in their power spectra. To produce such sig-
nals we have followed the approach in Granger (1980).
Accordingly, the 1/ f θ time series are generated as the
aggregation of numerous AR(1) processes with an ap-
propriate distribution of coefficients. Mathematically,
each 1/ f θ signal is then given by

x(t + 1) = 1
N

N∑

i=1

ri(t) , (13)

where we aggregate over N = 500 AR(1) processes
each described as

ri(t) = αiri(t − 1) + ση(t) , (14)

with the coefficients αi randomly chosen according to
the probability density function ∼ (1 − α)1−θ .

2.3.2 Types of interaction

To simulate a causal interaction between two systems
we added to the internal dynamics of one process (Y)
a term related to the past dynamics of the other (X).
Three types of interaction or effective connectivity
were considered; linear, quadratic, and threshold. In
the linear case, the interaction is proportional to the
amount of signal at X. The last two cases represent
strong non-linearities which challenge approaches of
detection based on linear or parametric methods. The
effective connectivity mediated by the threshold func-
tion is of special relevance in neuroscience applications
due to the approximated all or none character of the
neuronal spike generation and transmission. Mathe-

matically, the update of y(t) is then modeled by the ad-
dition of an interaction term such that the full dynamics
is described as

y(t) = D(y−) +

⎧
⎪⎨

⎪⎩

γlinx(t − δ) if linear,

γquadx2(t − δ) if quadratic,

γthresh
1

1+exp(b 1+b 2x(t−δ))
if threshold,

where D(.) represents the internal dynamics (AR(10)
or 1/ f ) of y and y− represents past values of y. In
the last case, the threshold function is implemented
through a sigmoidal with parameters b 1 and b 2 which
control the threshold level and its slope, respectively.
Here, b 1 was set to 0 and b 2 was set to 50. In all cases,
δ represents a delay which typically arises from the
finite speed of propagation of any influence between
physically separated systems. Note that since we deal
with discrete time models (maps) in our modeling δ

takes only positive integer values.
In case that two systems interact via multiple path-

ways it is possible that different latencies arise in
their communication. For example, it is known that
the different characteristics of the axons joining two
brain areas typically lead to a distribution of axonal
conduction delays (Swadlow et al. 1978; Swadlow 1985).
To account for that scenario we have also simulated the
case where δ instead of a single value is a distribution.
Accordingly, for each type of interaction we have con-
sidered the case where the interaction term is

Interaction term

=

⎧
⎪⎨

⎪⎩

∑
δ′ γlinx(t − δ′) if linear,

∑
δ′ γquadx2(t − δ′) if quadratic,

∑
δ′ γthresh

1
1+exp(b 1+b 2x(t−δ′)) if threshold ,

where the sums are extended over a certain domain
of positive integer values. In the results section we
consider the case in which δ′ takes values on a uniform
distribution of width 6 centered around a given delay.

The coupling constants γlin, γquad, γthresh were al-
ways chosen such that the variance of the interaction
term was comparable to the variance of y(t) that would
be obtained in the absence of any coupling.

2.3.3 Linear mixing

Linear instantaneous mixing is present in human non-
invasive electrophysiological measurements such as
EEG or MEG and has been shown to be problem-
atic for GC (Nolte et al. 2008). The problem we en-
counter for linearly and instantaneously mixed signals
is twofold: On the one hand, instantaneous mixing from
coupled source signals onto sensor signals by the mea-
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surement process degrades signal asymmetry (Tognoli
and Scott Kelso 2009), it will therefore be harder to
detect effective connectivity. On the other hand—as
shown in Nolte et al. (2008)—instantaneous presence of
a single source signal in two measurements of different
signal to noise ratio may be interpreted as effective
connectivity erroneously. To test the influence of linear
instantaneous mixing we created two test cases:

(A) The first test case consisted in unidirectionally
coupled signal pairs X → Y generated from cou-
pled AR(10) processes as described above and
then transformed into two linear instantaneous
mixtures Xε, Yε in the following way:

Xε(t) = (1 − ε)X(t) + εY(t) (15)

Yε(t) = εX(t) + (1 − ε)Y(t) (16)

Here, ε is a parameter that describes the amount
of linear mixing or ‘signal cross-talk’. A value
of ε of 0.5 means that the mixing leads to two
identical signals and, hence, no significant TE
should be observed. We then investigated for
three different values of ε = (0.1, 0.25, 0.4) how
well TE detects the underlying effective connec-
tivity from X to Y if only the linear mixtures
Xε, Yε are available.

(B) The second test case consisted in generating mea-
surement signals Xε, Yε in the following way:

Xε(t) = s(t) (17)

Yε(t) = (1 − ε)s(t) + εηY (18)

Here, s(t) is the common source, a mean-free
AR(10) process with unit variance. s(t) is mea-
sured twice: once noise free in Xε and once
dampened by a factor (1 − ε) and corrupted by
independent Gaussian noise of unit variance, ηY ,
in Yε . Here, we tested the ability of our im-
plementation of TE to reject the hypothesis of
effective connectivity. This second test case is of
particular importance for the application of TE
to EEG and MEG measurements where often
a single source may be observed on two sensors
that have different noise characteristics, i.e. due
to differences in contact resistance of the EEG
electrodes or the characteristics of the MEG-
SQUIDS.

2.3.4 Choice of embedding parameters for delayed
interactions

To demonstrate the effects of suboptimal embedding
parameters for the case of delayed interactions we

simulated processes with autoregressive order 10
(AR(10)) dynamics, three different interaction delays
(5, 20, 100 samples) and all three coupling types (linear,
threshold, quadratic). The two processes were coupled
unidirectionally X → Y. 15, 30, 60, and 120 trials were
simulated. We tested for effective connectivity in both
possible directions using permutation testing. All cou-
pled processes were investigated with three different
prediction times u of 6, 21, and 101 samples. The
remaining analysis parameters were: d = 7, τ = 1 act,
k = 4, T = 1 act. In addition, we simulated processes
with 1/ f dynamics, an interaction delay δ of 100 sam-
ples and a unidirectional, quadratic coupling. 30 trials
were simulated and we tested for effective connectivity
in both directions. These coupled processes were inves-
tigated with all possible combinations of three different
embedding dimensions d = 4, 7, 10, two different
embedding delays τ = 1 act or τ = 1.5 act and three
different prediction times u = 6, 21, 101 samples. The
remaining analysis parameters were: k = 4, T = 1 act.
Results are presented in Tables 1 and 2.

2.4 MEG experiment

Rationale In order to demonstrate the applicability of
TE to neuroscience data obtained non-invasively we
performed MEG recordings in a motor task. Our aim
was to show that TE indeed gave the results that were
expected based on prior, neuroanatomical knowledge.
To verify the correctness of results in experimental
data is difficult because no knowledge about the ulti-
mate ground truth exists when data are not simulated.
Therefore, we chose an extremely simple experiment—
self-paced finger lifting of the index fingers in a self-
chosen sequence—where very clear hypotheses about
the expected connectivity from the motor cortices to
the finger muscles exist.

Subjects and experimental task Two subjects (S1, m,
RH, 38 yrs; S2, f, RH, 23 yrs) participated in the
experiment. Subjects gave written informed consent
prior to the recording. Subjects had to lift the right and
left index finger in a self-chosen randomly alternating
sequence with approximately 2s pause between succes-
sive finger liftings. Finger movements were detected
using a photosensor. In addition, an electromyogram
(EMG) response was recorded from the extensor mus-
cles of the the right and left index fingers.

Recording and preprocessing MEG data were
recorded using a 275 channel whole head system
(OMEGA2005, VSM MedTech Ltd., Coquitlam, BC,
Canada) in a synthetic 3rd order gradiometer configu-
ration. Additional electrocardiographic, -occulographicc
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Table 1 Detection of true and false effective connectivity for a
fixed embedding dimension d of 7, and an embedding delay τ of
1 autocorrelation time

Dynamics δ Coupling u X → Y Y → X
True False

AR(10) 5 Lin 6 1 1
AR(10) 5 Lin 21 1 0
AR(10) 5 Lin 101 0 0
AR(10) 5 Threshold 6 1 1
AR(10) 5 Threshold 21 1 0
AR(10) 5 Threshold 101 0 0
AR(10) 5 Quadratic 6 1 1
AR(10) 5 Quadratic 21 1 0
AR(10) 5 Quadratic 101 0 0
AR(10) 20 Lin 6 1 1
AR(10) 20 Lin 21 1 0
AR(10) 20 Lin 101 1 0
AR(10) 20 Threshold 6 0 0
AR(10) 20 Threshold 21 1 0
AR(10) 20 Threshold 101 0 0
AR(10) 20 Quadratic 6 0 0
AR(10) 20 Quadratic 21 1 0
AR(10) 20 Quadratic 101 0 0
AR(10) 100 Lin 6 1 0
AR(10) 100 Lin 21 1 0
AR(10) 100 Lin 101 1 0
AR(10) 100 Threshold 6 0 0
AR(10) 100 Threshold 21 0 0
AR(10) 100 Threshold 101 1 0
AR(10) 100 Quadratic 6 1 0
AR(10) 100 Quadratic 21 1 0
AR(10) 100 Quadratic 101 1 0

Given is the detected effective connectivity in dependence of the
parameter prediction time u for data with different interaction
delays δ of 5, 20, and 100 samples. Data were simulated with
autoregressive order ten dynamics and unidirectional coupling
X → Y via three different coupling functions (linear, threshold,
quadratic). Simulation results based on 120 trials. Note: false
positives emerge for short interaction delays δ, i.e. the inclusion
of more recent samples of X, i.e. samples that are just before the
earliest embedding time-point; false positives in these cases are
suppressed using a larger prediction time, i.e. moving the embed-
ding of X and the samples of X that are transferred to Y further
into the past; short interaction delays can robustly be detected
with prediction times that are longer than the interaction delay,
if the difference is not excessive

and -myographic recordings were made to measure
the electrocardiogram (ECG), horizontal and
vertical electrooculography (EOG) traces, and the
electromyogram (EMG) for the extensor muscles of
the right and left index fingers. Data were hardware
filtered between 0.5 and 300 Hz and digitized at a
sampling rate of 1.2 kHz. Data were recorded in
two continuous sessions lasting 600 s each. For the
analysis of effective connectivity between scalp sensors
and the EMG, data were preprocessed using the
Fieldtrip open-source toolbox for MATLAB (http://

Table 2 Detection of true and false effective connectivity in
dependence of the parameters embedding delay τ , embedding
dimension d, and prediction time u for data with unidirectional
coupling X → Y via a quadratic function, 1/ f dynamics and an
interaction delay δ of 100 samples

Dynamics δ d u τ [ACT] X → Y Y → X

1/f 100 4 21 1 0 0
1/f 100 4 101 1 1 1
1/f 100 7 21 1 0 1
1/f 100 7 101 1 1 0
1/f 100 10 21 1 0 0
1/f 100 10 101 1 1 0
1/f 100 4 21 1.5 0 0
1/f 100 4 101 1.5 1 0
1/f 100 7 21 1.5 0 0
1/f 100 7 101 1.5 1 0
1/f 100 10 21 1.5 0 0
1/f 100 10 101 1.5 1 0

Simulation results based on 30 trials. Note how a larger τ elim-
inates false positive TE results for effective connectivity. Also
note how the delocalization in time provided by the embedding
enables the detection of effective connectivities also for interac-
tion delays larger than the prediction time

fieldtrip.fcdonders.nl/; version 2008-12-10). Data were
digitally filtered between 5 and 200 Hz and then cut
in trials from −1,000 ms before to 90 ms after the
photosensor indicated a lift of the left or right index
finger. This latency range ensured that enough EMG
activity was included in the analysis. We used the
artifact rejection routines implemented in Fieldtrip to
discard trials contaminated with eye-blinks, muscular
activity and sensor jumps.

Analysis of ef fective connectivity at the MEG sensor
level using transfer entropy Effective connectivity was
analyzed using the algorithm to compute transfer en-
tropy as described above. The algorithm was imple-
mented as a toolbox (Lindner et al. 2009) for Fieldtrip
data structures (http://fieldtrip.fcdonders.nl/) in MAT-
LAB. The nearest neighbour search routines were im-
plemented using OpenTSTool (Version1.2 on Linux 64
bit; Merkwirth et al. 2009). Parameters for the analysis
were chosen based on a scanning of the parameter
space, to obtain maximum sensitivity. In more detail
we computed the difference between the transfer en-
tropy for the MEG data and the surrogate data for all
combinations of parameters chosen from: τ = 1 act, u ∈
[10, 16, 22, 30, 150], d ∈ [4, 5, 7], k ∈ [4, 5, 6, 7, 8, 9, 10].
We performed the statistical test for a significant de-
viation from independence for each of these parame-
tersets. This way a multiple testing problem arose, in
addition to the multiple testing based on the multiple
directed intercations between the chosen sensors (see
next paragraph). We therefore performed a correc-

http://fieldtrip.fcdonders.nl/
http://fieldtrip.fcdonders.nl/
http://fieldtrip.fcdonders.nl/
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tion for multiple comparisons using the false discov-
ery rate (FDR, q < 0.05, Genovese et al. 2002). The
parameter values with optimum sensitivity, i.e. most
sginificant results across sensor pairs after corrcetion
for multiple comparison were: embedding dimensions
d = 7, embedding delay τ = 1 act, forward prediction
time u = 16 ms, number of neighbors considered for
density estimations k = 4, time window for exclusion
of temporally correlated neighbors T = 1act. In addi-
tion we required that prediction should be possible for
at least 150 samples, i.e. individual trials where the
combination of a long autocorrelation time and the
embedding dimension of 7 did not leave enough data
for prediction were discarded. We required that at least
30 trials should survive this exclusion step for a dataset
to be analyzed.

Even a simple task like self-paced lifting of the left or
right index finger potentially involves a very complex
network of brain areas related to volition, self-paced
timing, and motor execution. Not all of the involved
causal interactions are clearly understood to date. We
therefore focused on a set on interactions where clear-
cut hypothesis about the direction of causal interactions
and the differences between the two conditions existed:
We examined TE from the three bilateral sensor pairs
displaying the largest amplitudes in the magnetically
evoked fields (MEFs) (compare Fig. 7) before onset
of the two movements (left or right finger lift) to both
EMG channels. This also helped to reduce computation
time, as for an all-to-all analysis of effective connectiv-
ity at the MEG and EMG sensor level would involve
the analysis of 277 × 276 directed connections. We then
tested connectivities in both conditions against each
other by comparing the distributions of TE values in the
two conditions using a permutation test. For this latter
comparison a clear lateralization effect was expected, as
task related causal interactions common to both condi-
tions should cancel. Activity in at least three different
frequency bands has been found in the motor cortex
and it has been proposed that each of these different
frequency bands subserves a different function:

– A slow rhythm (6–10 Hz) has been postulated to
provide a common timing for agonist/antagonist
muscles pairs in slow movements and is thought
to arise from from synchronization in a cerebello-
thalamo-cortical loop (Gross et al. 2002). The cou-
pling of cortical (primary motor cortex M1, pri-
mary somatosensory cortex S1) activity to muscular
activity was proposed to be bidirectional (Gross
et al. 2002) in this frequency range. The coupling
may also depend on oscillations in spinal stretch
reflex loops (Erimaki and Christakos 2008).

– Activity in the beta range (∼20 Hz) has been sug-
gested to subserve the maintenance of current limb
position (Pogosyan et al. 2009) and strong cortico-
muscular coherence in this band has been found
in isometric contraction accordingly (Schoffelen et
al. 2008). Coherent activity in the beta band has
also been demonstrated between bilateral motor
cortices (Mima et al. 2000; Murthy and Fetz 1996).

– In contrast, motor-act related activity in the gamma
band (>30 Hz) is reported less frequently and its re-
lation to motor control is less clearly understood to
date (Donoghue et al. 1998). We therefore focused
our analysis on a frequency interval from 5–29 Hz.

Note that we omitted the frequently proposed pre-
processing of the EMG traces by rectification (Myers
et al. 2003), as TE should be able to detect effective
connectivity without this additional step.

3 Results

3.1 Overview

In this section we first present the analysis of effective
connectivity in pairs of simulated signals {X,Y}. All
signal pairs were unidirectionally coupled from X to Y.
We used three coupling functions: linear, threshold and
a purely non-linear quadratic coupling. We simulated
two different signal dynamics, AR(10) processes and
processes with 1/ f spectra, that were close to spectra
observed in biological signals. The two signals of a
pair always had similar characteristics. We always ana-
lyzed both directions of potential effective connectivity:
X → Y and Y → X to quantify both, sensitivity and
specificity of our method.

In addition to this basic simulation we investigated
the following special cases: coupling via multiple cou-
pling delays for linear and threshold interactions, lin-
early mixed observation of two coupled signals for lin-
ear and threshold coupling, and observation of a single
signal via two sensors with different noise levels. In this
last case no effective connectivity should be detected.
The absence of false positives in this latter case is of
particular importance for EEG and MEG sensor-level
analysis.

As a proof of principle we then applied the analy-
sis of effective connectivity via TE to MEG signals
recorded in a self-paced finger lifting task. Here the aim
was to recover the known connectivity from contralat-
eral motor cortices to the muscles of the moved limb,
via a comparison of effective connectivty for left and
right finger lifting.
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3.2 Simulation study

Detection of non-linear interactions for various signal
dynamics Transfer entropy in combination with per-
mutation testing correctly detected effective connectiv-
ity (X → Y) for both, autoregressive order 10 and 1/ f
signal dynamics and all three simulated coupling types
(linear, threshold, quadratic) if at least 30 trials were
used to compute statistics (Fig. 2). No false positives,
i.e. significant results for the direction Y → X, were

observed. We note that the cross-correlation function
between the signals X and Y were flat when coupled
non-linearly, which indicates that linear approaches
may be insufficient to detect a significant interaction in
those cases.

Detection of interactions with multiple interaction de-
lays The statistical evaluation of TE values robustly
detected the correct direction of effective connectivity
(X→Y) for the two unidirectionally coupled AR(10)

Fig. 2 Detection of effective
connectivity by TE for
two unidirectionally
coupled signals (X → Y).
(a–c) Signals generated
from an autoregressive order
ten process and coupled via
(a) linear, (b) threshold,
and (c) quadratic coupling.
(d–f) Signals generated
with dynamics of a 1/ f
noise process and coupled
via (d) linear, (e) threshold,
and (f) quadratic coupling.
A single interaction delay
of 20 samples was used.
Time courses of source
(X) and target (Y) signals
on the left and results of
permutation testing for a
varying number of trials
(15, 30, 60, 120) on the right.
Black bars indicate (1-p)
values for coupling X → Y
(true coupling direction),
gray bars indicate values of
(1-p) for coupling Y → X.
The dashed line corresponds
to significant effective
connectivity (p < 0.05) X
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time series (X,Y), coupled via a range of delays δ from
17–23 samples, and for the two unidirectionally coupled
1/ f time series, coupled via a range of delays δ from 97-
103 samples. The correct coupling direction (X → Y)
was found for all three investigated coupling functions
(linear, threshold, quadratic), even if only 15 trials were
investigated (Fig. 3). For these analysis we used a pre-
diction time u of 21 samples for the case of a delay δ of
17–23 samples, and a prediction time u of 101 samples
for the delay δ of 97–103 samples. Correct detection

of effective connectivity was also possible when using
a prediction time u of 21 samples for the delay δ of
97–103 samples, i.e. a prediction time that was shorter
than the interaction delay (data not shown). This was
expected because of the delocalization in time provided
for by the delay embedding. However, no effective
connectivity was detected when using a prediction time
u of 101 samples for a interaction delay δ of 17–23
samples, i.e. when using a prediction time that was
considerably longer than the interaction delay (data not

Fig. 3 Detection of effective
connectivity by TE for two
unidirectionally coupled
time series (X → Y) with
a range of coupling delays
as indicated by the shaded
boxes in (a) and (d).
(a–c) autoregressive order
ten processes; interaction
delays 17–23 samples.
(a) Linear interaction,
(b) threshold coupling,
and (c) quadratic coupling.
(d–f) 1/ f processes;
interaction delays 97–103
samples. (d) Linear
interaction, (e) threshold
coupling, and (f) quadratic
coupling. Time series are
plotted on the left, results
of permutation testing for
different numbers of
simulated trials (15, 30,
60, 120) on the right. Black
bars indicate values of (1-p)
for coupling X → Y (true
coupling direction), gray
bars indicate values of (1-p)
for coupling Y → X. The
dashed line corresponds
to significant effective
connectivity (p < 0.05)
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shown; compare Table 1 for single interaction delays).
No false positive effective connectivities (Y→X) were
found. However, relatively high values for (1-p) for
some cases indicate that the embedding parameters
were not optimally chosen, as discussed below.

Detection of ef fective connectivity from linearly mixed
measurement signals In order to investigate the appli-
cation of TE to EEG and MEG sensor signals, where
the signals from the processes in question can only be
observed after linear mixing processes, we simulated
two unidirectionally coupled AR(10) signals (X → Y
with linear or threshold coupling). These signals then
underwent a symmetric linear mixing process in depen-
dence of a parameter ε in the range from 0.1 to 0.4,
where a value of ε = 0.5 would indicate identical mixed
signals (see Eqs. (15), (16)). For the case of linearly

coupled source signals TE indicated effective connec-
tivity in direction from the sensor signal Xε that had a
higher contribution from the driving process (X) to the
sensor Yε dominated by the receiving process (Y) for
all investigated cases of linearly mixed measurement
signals except for the case of ε = 0.4. In this case TE
detected the correct direction of the interaction and
did not result in false positive detection, however, the
time-shift test indicated the presence of instantaneous
mixing and the result could not be counted as a cor-
rect detection of effective connectivity. For the case of
source signals that were coupled via a threshold func-
tion TE in combination with the time-shift test correctly
identified effective connectivty and did not result in
false positive detection for all of the investigated linear
mixing strengths. These observations held even if only
15 trials were evaluated (Figs. 4 and 5).

Fig. 4 Simulation results
for linearly mixed measure-
ments (Xε , Yε ) of two
unidirectionally and linearly
coupled underlying source
signals (X → Y). (a) Mixing
model and original auto-
regressive source time
courses X, Y. (b–d) Effective
connectivity between
sensor-level signals Xε , Yε .
Left statistics of permutation
tests of TE values for the
original sensor level data
against trial-shuffled
surrogate data after
application of the additional
time-shift test. The plots
contain values of (1-p) in
dependence of the number
of investigated number of
trials. Black bars indicate
values for the effective
connectivity from the sensor
dominated by the driving
source signal (Xε) to the
sensor dominated by the
receiving source signal (Yε).
Light grey bars indicate the
reverse direction of effective
connectivity. The dashed line
corresponds to siginificant
effective connectivity
(p < 0.05). Right time-
courses of signals Xε and
Yε for a single trial

process: autoregressive order 10; coupling: linear; single delay; observation: linearly mixed
(TE-parameters: d=7, τ=1.5*act(Y), u=21)
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Fig. 5 Simulation results
for linearly mixed measure-
ments (Xε , Yε ) of two
unidirectionally coupled
underlying source signals
(X → Y) coupled via a
threshold function. (a)
Mixing model and original
autoregressive source time
courses X, Y. (b–d) Effective
connectivity between
sensor-level signals Xε , Yε .
Left statistics of permutation
tests of TE values for the
original sensor level data
against trial-shuffled
surrogate data after
application of the additional
time-shift test. Black bars
indicate values for the
effective connectivity from
the sensor dominated by the
driving source signal (Xε) to
the sensor dominated by the
receiving source signal (Yε).
Light grey bars indicate the
reverse direction of effective
connectivity. The dashed line
corresponds to siginificant
effective connectivity
(p < 0.05). Right time-courses
of signals Xε and Yε for a
single trial
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Robustness against instantaneous mixing To quantify
the false positive rates when applying transfer entropy
to multiple observations of the same signal, but with
differential noise, we simulated an autoregressive or-
der 10 process and two observation of this process:
one noise free observation, Xε , and a second obser-
vation, Yε , corrupted by a varying amount of white
noise (Fig. 6(a) and (b)). Similar to the performance
of GC in this case (Nolte et al. 2008), the application
of TE resulted in a considerable number of false posi-
tive detections of effective connectivity from the noise
free sensor signal to the noise-corrupted sensor signal
(Fig. 6(c)). However, application of the time-shifting
test as proposed in the methods section removed all
false positive cases.

Choosing embedding parameters for delayed interac-
tions To demonstrate the importance of correct em-
bedding we simulated unidirectionally coupled signals
with various interaction delays and analyzed effective
connectivity with different choices for the embedding
dimension d, the embedding delay τ and the predic-
tion time u (Tables 1 and 2). As expected because of
theoretical considerations (see Fig. 1), false positive
effective connectivity is reported for short interaction
delays (5, 20 samples) in combination with short pre-
diction times (six samples) and insufficient embedding
(d = 4, τ = 1 act). In contrast, if we try to detect long
interactions delays (δ = 20, 100) with too short predic-
tion times (u = 6), again with insufficient embedding,
the method looses its sensitivity, as expected. This in-
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process: autoregressive order 10; single source; observation: linearly mixed
(TE-parameters: d=4, τ=1*act(Y), u=1)
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Fig. 6 False positive rates for the detection of effective connec-
tivity when observing one source via two EEG or MEG sensors.
(a) Signal generation by an autoregressive order ten process X(t)
and simultaneous observation of this source signal on two sensor
signals Xε , Yε . One of the signals is a copy of the source signal
(Xε(t) = X(t)); the other, (Yε), is dampened by a factor of (1 − ε)

and corrupted by white noise εη. (b) Resulting signal time courses
for the source signal X(t) and the observed sensor signals Yε

for different values of ε. (c) False positive detection rate for

effective connectivity from the noise free sensor signal Xε to the
noise corrupted signal Yε before (dashed line) and after (solid
line) the additional time-shift test for instantaneous mixing. In
accordance with (Nolte et al. 2008) TE without the additional test
yields a certain amount of false positive results. (d) False positive
detection rate for effective connectivity from the noise corrupted
signal Yε to the noise free sensor signal Xε . Lines as in (c). No
false positives were observed after the additional time shifting
test

dicates that for given analysis parameters (d,τ ,u) the
range of interaction delays δ that can be investigated
reliably is limited (Table 1). The above problem is
solved naturally by increasing embedding dimensions
and embedding delays as demonstrated in Table 2—
although this may not be possible in practical terms
sometimes. In our simulations we generally found an
embedding delay of τ = 1.5 act in combination with
embedding dimensions between 7 and 10 to be more
appropriate than smaller (d = 4, also see Table 2) or
larger embedding dimensions (d = 13, 16, 19, data not
shown) or a shorter embedding delay (τ = 1 act). While

it is often proposed to use τ = 1 act for embedding our
data suggest that for the evaluation of TE it is partic-
ularly important to cover most or all of the memory
inherent in both, source and target signals. For our data
this could be be achieved by choosing τ > 1.5 act to
prevent against false positive detection of causality in
the presence of delayed interactions. We also observed
that values of the prediction time u close to the actual
interaction delay δ made the analysis of TE both, more
sensitive and more robust against false positives, even
for suboptimal choices of d and τ (Tables 1 and 2).
Hence, a choice of u close to δ, e.g. based on prior
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Fig. 7 Neuromagnetic fields
in a finger lifting task.
(a) Single-trial raw traces
of magnetic fields (thin line)
measured by two MEG
sensors over left (MLT24)
and right (MRT24) motor
cortex (also compare (d) for
the position of these sensors).
In this trial the right finger
was lifted. (b) Corresponding
single trial EMG traces
obtained from the left
(EMG L) and right (EMG R)
forearm. Time ‘0’ indicates
the sample when the light
barrier switch detected the
finger lift. (c) Topography of
magnetic fields averaged over
trials at −50 ms before the
registration of a right index
finger lift. Note the dipolar
pattern over left central
cortex. (d) Layout of the
MEG sensors. Sensors used
for analysis of effective
connectivity are indicated
by solid circles. Lines with
arrowheads indicate the
investigated connections
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Fig. 8 Differences in effective connectivity (EC) between lifting
of the right (RFL) and left index finger (LFL) for subject 1 (left)
and subject 2 (right). The investigated frequency band was 5–29
Hz encompassing the μ and β rhythms, and avoiding 50 Hz conta-
mination. Red lines indicate links where effective connectivity as
quantified by TE was significantly larger for lifting of the right

index finger, compared to left. Blue lines indicate links where
effective connectivity as quantified by TE was significantly larger
for lifting of the left index finger, compared to right. Connectivity
from contra- and ipsilateral motor cortices to muscles (EMG L,
EMG R) of the moved finger is stronger than to the passive finger
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(e.g. anatomical) knowlegde, may yield a method that
is more robust in the face of unkown and hard to
determine values for d and τ .

3.3 Effective connectivity at the MEG sensor level

Motor evoked f ields Self paced lifting of the right or
left index fingers in a self chosen sequence resulted
in robust motor evoked fields, that were compatible
with motor evoked fields reported in the literature
(Mayville et al 2005; Weinberg et al. 1990; Nagamine et
al. 1996; Pedersen et al. 1998) (Fig. 7). We observed a
slow readiness field at sensors over contralateral motor
cortices starting approximately 350 ms before onset
of EMG activity and a pronounced reversal of field
polarity during movement execution (data not shown).

Movement related ef fective connectivity As expected,
effective connectivity from sensors over contralateral
motor cortices was significantly larger to EMG elec-
trodes over the muscle of the moved finger than to
the EMG electrode over the muscle of the non-moved
finger (Fig. 8). Unexpectedly however, effective con-
nectivity from ipsilateral motor cortices was also sig-
nificantly larger to the EMG electrodes over the muscle
of the moved finger than to the EMG electrode over the
muscle of the non-moved finger. Effective connectivity
was never larger from any sensor over motor cortices to
the EMG electrodes over the muscle of the non-moved
finger.

4 Discussion

Transfer entropy as a tool to quantify ef fective connec-
tivity In the present study we aimed to demonstrate
that TE is a useful addition to existing methods for
the quantification of effective connectivity. We argued
that existing methods like GC, that are based on linear
stochastic models of the data, may have difficulties
detecting purely non-linear interactions, such as
inverted-U relationships. Here, we could show that
transfer entropy reliably detected effective connectivity
correctly when two signals were coupled by a quadratic,
i.e. purely non-linear, function (Fig. 2). Particularly rel-
evant for neural interactions, we have also shown that
couplings mediated by threshold or sigmoidal functions
are correctly captured by TE.

Furthermore, we extended the original definition of
TE to deal with long interaction delays and demon-
strated that TE detected effective connectivity correctly
when the coupling of two signals was mediated by

multiple interactions that spanned a range of latencies
(Fig. 3).

Moreover, we considered the problem of volume
conduction and showed that TE robustly detected
effective connectivity when only linear mixtures of the
original coupled signals were available (Figs. 4 and 5),
if signals were not too close to being identical. In
addition, if the two measurements reflected a com-
mon underlying source signal (’common drive’) but
had different levels of measurement noise added, TE
in combination with a test on time shifted data, cor-
rectly rejected the hypothesis of effective connectivity
between the two measurement signals, in contrast to a
naive application of GC (Nolte et al. 2008). Therefore,
TE in combination with this test is well applicable
to EEG and MEG sensor-level signals, where linear
instantaneous mixing is inherent in the measurement
method. However, without the additional test on time
shifted data, TE had a non-negligible rate of false
positives detections of effective connectivity. The origin
of these false positives can be understood as follows.
Theoretically transfer entropy is zero in the absence of
causality, i.e. when processes are fully independent—as
should be the case for surrogate data. TE is also zero
for identical copies of a single signal, as required from
a causality measure, when driver and response system
cannot be distinguished. Here, we considered the case
of volume conduction of a single signal onto two sen-
sors in the presence of additional noise. Hence, the use
of surrogate data for a test of the causality hypothesis
inevitably leads to the comparison of two (noisy) zeros
and false positives. Because of this difficulty we sug-
gest to perform the time-shift test whenever multiple
observations of a single source signal are likely to be
present in the data, as is the case for EEG and MEG
measurements.

Last but not least, we proposed TE as a tool for the
exploratory investigation of effective connectivity, be-
cause it is a model-free measure based on information
theory. Complicated types of coupling such as cross-
frequency phase coupling (Palva et al. 2005) should
be readily detectable without prior specification, e.g.
the coupling via a quadratic function—as investigated
here—, introduces a frequency doubled (and distorted)
input to the target signal. Nevertheless it was read-
ily detected by TE. While the argument on model-
freeness holds theoretically, any practical implemen-
tation comes with certain parameters that have to be
adapted to the data empirically, such as the correct
choice of a delay τ and the number of dimensions d
used for delay embedding. In addition, the implemen-
tation of TE proposed here incorporates a parameter
for the prediction time u to adapt the analysis for cases
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where a long interaction delay is present. If chosen ad
hoc these parameters amount to a sort of model for
the data. To keep the method model-free we therefore
proposed to scan a sufficiently large parameter space
on pilot data before analyzing the data of interest or to
scan the parameter space and to correct for the arising
multiple comparison problem later on, during statistical
testing.

To handle the estimation of TE, the parameter scan-
ning and the statistical testing, including the shift-test,
we implemented the proposed procedure in the form
of a convenient open-source MATLAB toolbox for the
Fieldtrip data format that is available from the authors
(Lindner et al. 2009).

Limitations Despite the above-mentioned merits, the
TE method also has limitations that have to be consid-
ered carefully to avoid misinterpretations of the results:

We note that model-freeness is not always an ad-
vantage. In contrast to model-based methods, the de-
tection of effective connectivity via TE does not entail
information on the type of interaction. This fact has two
important consequences. First, the absence of a specific
model of the interaction leads to a high sensitivity for
all types of depedencies between two time-series. This
way, trivial (nuisance) dependencies, might be detected
by testing against surrogates. This is bound to happen if
these dependencies are not kept intact when creating
the surrogate data. Second, the specific type of inter-
action must be separately assessed post hoc by using
model based methods, after the presence of effective
connectivity was established using transfer entropy. In
principle the analysis of effective connectivity using TE,
and the post-hoc comparison of signal pairs with and
without significant interaction in an exploratory search
of the actual mechanism of this interaction are possible
in the same dataset. This is because these two questions
are orthogonal. However, the relationship between sig-
inificant effective connectivity—detected by TE—and a
specific mechanism of the interaction needs to be tested
on independent data.

Another limitation is that false positive reports are
possible when the embedding parameters for the re-
construction of the state space are not chosen correctly.
We therefore suggest to use TE with a careful choice
of parameters, especially with respect to τ , and only
after checking that the data to be analyzed meets cer-
tain characteristics. In the following we list a number
of characteristics to be considered. First, strong non-
stationarities in the data can make impossible to av-
erage over time to reliably estimate the probability
densities on which TE is based. Consequently, TE
should only be used on data of sufficient length that

show at most weak non-stationarities. For an approach
to overcome this limitation problem by using the trial
structure of data sets see Gomez-Herrero et al. (2010).
Second, in this work we have only assessed pairwise
interactions. Although a fully multivariate extension
is conceptually possible (Gomez-Herrero et al. 2010;
Lizier et al. 2008), practical data lengths and computing
time restrict its use. Third, TE analysis is difficult to
interpret when signals have a different physical origin
such as for example a chemical concentration and an
electric field. The reason is that even though the signals
entering the TE analysis are z-scored to obtain a certain
normalization, there is no clear physical meaning of
distance in the joint space of the signals, and conse-
quently, no a priori justification to use any particular
coarse-graining box in the two directions. Since the
results of TE are sensitive to the use of different coarse-
graining scales in the two directions, the meaning of
any numerical estimate of TE for signals of different
physical origin is difficult to establish. Finally, if the
interaction to be captured is known to be linear, then
the use of linear approaches is fully justified and usually
outperforms TE in aspects such as computing time and
data-efficiency. Last but not least we should comment
on some general limitations related to the concept of
causality as defined by Wiener. It is important to note
that Wiener’s definition does not include any interven-
tions to determine causality, i.e. it describes observa-
tional causality. Methods based on Wiener’s principle
such as GC, TE share certain limitations:

1. The decsription of all system involved has to be
causally complete, i.e. there must not be unob-
served common causes that do not enter the analy-
sis.

2. If two systems are related by a deterministic map,
no causality can be inferred. This would exclude
systems exhibiting complete synchronization, for
example. Technically this is reflected in Eq. (4):
For TE to be well defined the probability densi-
ties and their logarithms must exist. Therefore δ-
distributions in the joint embedding space of two
signals, which are equivalent to deterministic maps
between these signals, are excluded.

3. The concept of observational causality rests on
the axiom that the past and present may cause
the future but the future may not cause the past.
For this axiom to be useful observations must be
made at a rate that allows a meaningful distinction
between past, present and future with respect to
the interaction delays involved. This means that
interactions that take place on a timescale faster
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than the sampling rate must be missed in methods
based on observational causality.

Application of TE to MEG recordings in a motor task
As a proof-of-principle, we applied TE to MEG data
recorded during self paced finger lifting. The analysis
of the effective connectivity from MEG to EMG signals
was performed without the recommended rectification
of the EMG signal (Myers et al. 2003) to proove
that TE could perform the analysis well without this
step. Our expectations of stronger effective connec-
tivity from contralateral motor cortex to the moved
finger were met for both fingers in both investigated
subjects. Surprisingly, however, we also found stronger
effective connectivity from ipsilateral motor cortex to
the moved finger. It is not clear at present whether this
effective connectivity reflected an indirect interaction:
Contralateral motor cortex may drive both, ipsilateral
cortex and the muscles of the moved finger, albeit with
strongly differing delays. In this case, TE may erro-
neously detect effective connectivity from ipsilateral
cortex to the muscle, as discussed above. Additional
analyses, quantifying the coupling between the two
motor cortices will be necessary to clarify this issue. As
discussed below, these analyses should preferentially
be performed using a multivariate extension of the TE
method.

Comparison to existing literature The application of
non-linear methods to detect effective connectivity in
neuroscience data has been suggested before: One of
the earliest attempts to extend GC to the non-linear
case and to apply it to neurophysiological data was
presented by Freiwald et al. (1999). They used a lo-
cally linear, non-linear autoregressive (LLNAR) model
where time varying autoregression coefficients were
used to capture non-linearities. This model was only
tested, however, on simulations of unidirectionally and
linearly coupled signals and correctly identified the
coupling as unidirectional and as linear. No attempt
was made to validate the model on simulations of
explicitly non-linear directed interactions. Application
to EEG data from a patient with complex partial
seizures indicated non-linear coupling of the signals
measured at electrode positions C3 and C4. Another
test on local field potential (LFP) data recorded in the
anterior inferotemporal cortex (macaque area TE) of
the macaque monkey however detected no indication
of a non-linear interaction. We add to these results
by demonstrating that also purely non-linear (square,
threshold) interactions are reliably detected using TE
in combination with appropriate statistical testing and
by demonstrating that interactions can also be found

in MEG and EMG data, even when omitting the usual
rectification of the EMG. Chávez et al. (2003) used TE
on data from an epileptic patient and also proposed a
statistical test based on block-resampling of the data
that is similar to the trial shuffling approach used here.
They found that TE with a fixed prediction time and a
fixed inclusion radius for neighbor search was able to
detect the directed linear and non-linear interactions
for the simulated models. Our findings are in agree-
ment with these results. In addition, we demonstrated
that TE also detects directed non-linear interactions
for biologically plausible data with 1/f characteristics
and a range of interaction delays instead of a single
delay. Hinrichs et al. (2008) used a measure that is very
similar to transfer entropy as it was investigated here.
However, in contrast to our study they substituted the
time-consuming estimation of probability densities by
kernel-based methods with a linear method based on
the data covariance matrices. As explicitely stated in
the mathematical appendix of Hinrichs et al. (2008) this
effectively limits the detection of directed interactions
to linear ones. Here, we demonstrate that, while being
relatively time consuming, a kernel based estimation of
the required probability densities is feasible using the
Kraskov-Stögbauer-Grassberger estimator (Kraskov
et al. 2004), even for a dimensionality of five and higher.
We note however, that the amount of data necessary
for these estimations may not always be available and
that the achievable ‘temporal resolution’ is limited by
this factor. Interestingly, scanning of the prediction
time u, revealed an optimal interaction delay in the
MEG/EMG data of around 16 ms, in accordance with
their findings.

Outlook As demonstrated in this study TE is a useful
tool to quantify effective connectivity in neuroscience
data. Its ability to detect purely non-linear interactions
and to operate without the specification of one or
more a priori models make it particularly useful for
exploratory data analysis, but its use is not limited to
this application. The implementation of TE estimation
used here only considered pairs of signals, i.e. it is
a bivariate method. Direct and indirect interactions
may, therefore, not be separated well. However, an
extension to the multivariate case is possible as noted
before (e.g. Chávez et al. 2003) and is currently under
investigation. Its application to cellular automata by
Lizier and colleagues have already revealed interesting
insights into the pattern formation and information
flow in these models of complex systems (Lizier et al.
2008).

The problem of direct versus indirect interactions
can also be ameliorated for the case of MEG and EEG
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data by performing the analysis at the level of source
time-courses obtained from a suitable source analysis
method. Using source level time-courses will reduce the
number of signals for analysis. A post hoc analysis of
the obtained reduced network of effective connectivty
by DCM may be possible then. Using source level
time-courses will also improve the interpretability of
the obtained effective connectivities compared to those
at the sensor level. This is because for a given causal
interaction observed at the sensor level any of the
multiple sources reflected in the sensor signal may be
responsible for the observed effective connectivity.

Although the estimation of TE presented here is
geared at continuous data TE has found application in
the analysis of spiking data as reported in Gourvitch
and Eggermont (2007). The particularities to estimate
TE from point processes can be found there. Thus, both
macroscopic (fMRI, EEG/MEG) and more local sig-
nals (LFP, single unit activity) can be readily analized
in the common framework of TE. In the future, it will
be interesting to compare the effective connectivities
for a variety of temporal and spatial scales as revealed
by TE.

Conclusion Transfer entropy robustly detected
effective connectivity in simulated data both for
complex internal signal dynamics (1/ f ) and for strongly
non-linear coupling. Detection of effective connectivity
was possible without specifying an a priori model. With
the use of an additional test for linear instantaneous
mixing it was robust against false positives due to
simulated volume conduction. Therefore it is not
only applicable for invasive electrophysiological data
but also for EEG and MEG sensor-level analysis.
Analysis of MEG and EMG sensor-level data recorded
in a simple motor task data revealed the expected
connectivity, even without rectification of the EMG
signal. We therefore propose TE as a useful tool for
the analysis of effective connectivity in neuroscience
data.
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