
[page 24]                                                      [Infectious Disease Reports 2016; 8:6568]

Tuberculosis biomarkers: 
from diagnosis to protection
Delia Goletti,1 Elisa Petruccioli,1
Simone A. Joosten,2
Tom H.M. Ottenhoff2
1Translational Research Unit, Department
of Epidemiology and Preclinical Research,
National Institute for Infectious Diseases,
L. Spallanzani, Rome, Italy; 2Department
of Infectious Diseases, Leiden University
Medical Centre, The Netherlands

Abstract

New approaches to control tuberculosis
(TB) worldwide are needed. In particular, new
tools for diagnosis and new biomarkers are
required to evaluate both pathogen and host
key elements of the response to infection.
Non-sputum based diagnostic tests, biomark-
ers predictive of adequate responsiveness to
treatment, and biomarkers of risk of develop-
ing active TB disease are major goals. Here, we
review the current state of the field. Although
reports on new candidate biomarkers are
numerous, validation and independent confir-
mation are rare. Efforts are needed to reduce
the gap between the exploratory up-stream
identification of candidate biomarkers, and
the validation of biomarkers against clear clin-
ical endpoints in different populations. This
will need a major commitment from both sci-
entists and funding bodies.

Introduction

Tuberculosis (TB) is a communicable infec-
tious disease, spread almost exclusively by
coughed aerosols carrying pathogens from the
Mycobacterium tuberculosis (Mtb) complex.
TB is characterized pathologically by necrotiz-
ing granulomatous inflammation usually in
the lung, although almost any extra-pulmonary
site can be involved. TB remains one of the
most significant infectious causes of mortality
and morbidity worldwide. As reported by the
World Health Organization (WHO) it causes
disease among 9.6 million people each year
and ranks alongside the human immunodefi-
ciency virus (HIV) as a leading cause of death
worldwide.1 In 2014, 1.5 million TB deaths
were reported and among them approximately
140,000 were children. The number of TB
deaths is unacceptably high because with a
well-timed diagnosis and appropriate treat-
ment, almost all people with TB can be cured.
Therefore all efforts to fight TB must be inten-

sified. Additionally, it is estimated that one-
third of the world’s population is latently
(asymptomatically) infected with Mtb, and
approximately 3 to 10% of these infected indi-
viduals are likely to progress to active disease
during their life. The risk of reactivation and
subsequent disease and mortality is signifi-
cantly increased in individuals with HIV coin-
fection2,3 and therapy with TNFa inhibitors.4,5

Approaches to decrease TB morbidity and mor-
tality, along with Mtb transmission, rely on
effective treatment, correct diagnosis, and pre-
vention of infection and disease. 
Effective therapy is central to any strategy

for controlling TB and biomarkers that indicate
initiation of successful treatment could facili-
tate development of alternative treatment
strategies. There is a need for shorter treat-
ment regimens to increase compliance.
Unfortunately, recent studies have not shown
definitive results.6-8 In fact, in the REMoxTB
Clinical Trials experience, despite early effec-
tiveness (superior early bactericidal activity
and 2-month culture conversion rates in
patients treated with moxifloxacin compared
to the standard regimen), the 4-month-regi-
men was less effective than the standard 6-
month regimen in preventing TB recurrence.6,8

Moreover, correct and efficacious treatment is
also needed to avoid multidrug-resistant
(MDR)-TB. Globally, an estimated 3.3% of new
TB cases and 20% of previously treated cases
had MDR-TB in 2014.1 This translates into an
estimated 480,000 people having developed
MDR-TB in 2014 with a treatment success rate
of only 48%.1 Patients with MDR-TB urgently
require treatments that quickly eradicate
active infection while preventing emergence
of additional resistance, which otherwise
causes treatment failure and death. 
Accurate diagnosis is also a cornerstone of

TB control. Active TB diagnosis is based on the
detection of Mtb in sputum, which depends on
the presence of necrotic infection foci in prox-
imity to the airways. The diagnosis then is
based on sputum smear and culture,9-12 and
more recently positive GeneXpert MTB/RIF
tests.13 Microscopy is largely available and
highly specific, but lacks sensitivity, missing
the diagnosis in over one third of patients
seeking care.9,14 Mycobacterial culture remains
the gold standard for TB diagnosis, but pro-
vides results only after considerable delay (3-4
weeks). All these diagnostic tests require a
Mtb-positive sputum while many active TB
patients, including HIV-coinfected individuals,
diabetes patients, and children, often do not
present with Mtb positive sputum.15,16 In pul-
monary TB a positive microbiological diagno-
sis inevitably means the presence of Mtb in the
airway secretions, such that in all likelihood
Mtb has been already transmitted to others. By
definition, sputum diagnostics are not useful
in extra-pulmonary disease, the diagnosis of

which relies on samples (tissue or biological
fluids as pleural-, cerebral-, synovial-fluids)
collected by invasive procedures. For all of
these reasons, there is need for the develop-
ment of highly sensitive and specific diagnos-
tic tests for TB to rapidly identify − or rule out
− the presence of active disease. These tests
need to perform in endemic settings with lim-
ited laboratory facilities, at low cost, using eas-
ily accessible non-sputum based samples such
as blood, urine, or breath. These are the four
high priority target product profiles (TPPs)
recently published by the WHO as a result of a
consensus meeting on new TB diagnostics.17

Therefore the urgent need to search for bio-
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markers (defined as measurable characteris-
tics that indicate normal or pathogenic biolog-
ical processes, or pharmacological responses
to therapeutic intervention)18 needs to be
highlighted: biomarkers can serve as surro-
gate endpoints in clinical trials, and can be
used to improve treatment outcome by inform-
ing therapeutic decisions for individual
patients.19 Sputum culture conversion using
solid medium is the best-characterized TB bio-
marker for successful treatment, having been
examined in many studies either as a simple
measure (e.g. month 2 culture status) or in
more complex forms requiring subsequent
negative cultures (e.g. stable culture conver-
sion). However, as reported above, in the
REMoxTB trial patients developed recurrent
TB despite negative sputum cultures at month
2. Thus better biomarkers predictive of TB
treatment outcome are needed.20,21 This is a
priority for the TB research field and has the
potential to impact not only research but also
clinical practice globally.22-24

In this paper we will review most of the
recent advances in research into TB biomark-
ers for the diagnosis of active TB, latent TB
infection (LTBI) and prevention of TB disease. 

Biomarkers for diagnosing
active tuberculosis 

We may distinguish biomarkers related to
the pathogen and to the host (Figure 1). From
the pathogen perspective, Mtb products could
be detected directly in blood, sputum or urine.
Mtb DNA can be detected in blood and urine of
pulmonary TB patients with a better sensitivity
than Mtb culture from the same biological
fluid.25-27 The Mtb cell wall component lipoara-
binomannan (LAM) has been proposed as TB
biomarker; however the available commercial
test on urine has a poor sensitivity.28 This can
be partly enhanced by other LAM assays.29-31

Although unsatisfactory as yet, in HIV-infected
patients the Mtb DNA and LAM detection in
urine may be an important tool to consider
especially for those advanced cases with low
CD4 T-cell counts.32-34 The Mtb Ag85 complex is
a 30-32 kD family of three proteins (Ag85A,
Ag85B, and Ag85C) with enzymatic mycolyl
transferase activity involved in the coupling of
mycolic acids to the arabinogalactan of the cell
wall and in the biogenesis of the cord fac-
tor.35,36 The detection of Ag85 in blood and
urine, however, shows highly variable perform-
ance in different studies.29,37,38

Among the host biomarkers, there are vari-
ous non-sputum based-assays for active TB
diagnosis, relying on serum, plasma, urine or
stimulated or unstimulated blood. Considering
serum or plasma products, Mtb specific anti-
body detection is not a promising diagnostic

approach due to heterogeneity of the response
to Mtb.11,39 Moreover WHO negatively advised
on the use of such tests for diagnosing active
TB disease.40 The evaluation of serum micro-
RNAs has shown different levels of accuracy
for diagnosing active TB in drug-sensitive and
drug resistant TB.41-44

A broad range of potential transcriptional TB
biomarkers has been reported. Modular and
pathway analysis revealed that the neutrophil
driven interferon (IFN)-inducible gene profile,
consisting of both Type 2 (IFNγ) and Type I
(IFNαβ) IFN signaling represented a signifi-
cant TB signature detectable in the peripheral
blood from pulmonary TB patients.45 These
findings have been also validated in other pop-
ulations,21,46-50 and in several studies could dif-
ferentiate TB from other respiratory infections
and inflammatory diseases.24,45,49,51 Moreover it
has been shown that disease activity increased
the signature whereas treatment decreased
it.21,22,49 Integrated analysis of gene expression
signatures obtained in eight independent
studies revealed additional pathways that are
likely to contribute to discrimination of TB dis-
ease from other diseases.52 Diagnostic signa-
tures to distinguish TB from other diseases
and from LTBI were also found in children
from South Africa, Malawi and Kenya.53

However one of the major challenges in the
evaluation of new childhood TB diagnostic is
the lack of a reference, due to the difficulty of
microbiological diagnosis of active disease.
Taking all these studies together it is impor-
tant to mention that the minimum TPP
requirements are not yet satisfied in terms of

sensitivity and specificity. The complexity of
the analysis and the expensive molecular tech-
niques related to the transcriptional profiles
make it currently difficult to be used as routine
diagnostic tests unless easier technologies are
developed.52 However, all studies reported
above are important for our comprehension of
TB pathogenesis. 
The interferon (IFN)γ inducible protein 10

(IP10) was found to be increased in the
unstimulated plasma of children and adults
with active TB,54-58 and has been evaluated by
different methodologies including also innova-
tive technologies based on lateral flow assays
using the interference-free, fluorescent up
converting phosphor (UCP) labels in multicen-
ter studies conducted in Africa.59-63

Interestingly, IP10 can be also detected in the
urine of adult patients,64 Ugandan children
with active TB,58 and IP10 levels decreased
after efficacious therapy.64 In comparison with
blood, urine biomarkers offer the advantage of
non-invasive sample collection, especially in
children, and also pose lower bio safety risks
for health care workers. 
Flow-cytometry has been proposed as a

potential tool to help improving TB diagnosis.
Advancement in multiparametric flow cytome-
try allows the simultaneous evaluation of sev-
eral immune functions in single cells such as
cytokine production and memory status.
Polyfunctional T-cells, cells able to produce
more than one cytokine simultaneously, have
been described as part of immune response to
different pathogens such as viruses, bacteria
and worms.65-68 Moreover T-cells coproducing
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Figure 1. Flow chart of the biomarkers for active tuberculosis diagnosis. TB: tuberculosis;
Ag: antigen; LAM: lipoarabinomannan; BAL: broncholavage; IP: Interferon-γ inducible
protein; FACS: Fluorescence-activated cell sorting.

Non
 co

mmerc
ial

 us
e o

nly



[page 26]                                                      [Infectious Disease Reports 2016; 8:6568]

IFNγ, TNFα and IL2 have been associated with
protective T-cell immune responses in HIV
non-progressors subjects.67 Studies evaluating
the role of polyfunctional T-cells in TB did not
show consistent results. Active TB has been
associated with either monofunctional
TNFα+CD4+ T-cells,69 or double functional
IFNγ+TNFa+ CD4+ T-cells,70-73 or triple function-
al IFNγ+TNFα+IL2+ CD4+ T-cells.74 By contrast,
studies on activation and memory status of
Mtb-specific T-cells seem to be more consis-
tent, even when comparing patient popula-
tions enrolled at different sites or using differ-
ent experimental settings. Effector T-cells
expand during active Mtb replication, whereas
memory cells associate with control and eradi-
cation of Mtb infection.71,72,75-78 In particular, it
has been shown that active TB is associated
with a decrease in CD27 surface expression on
circulating Mtb-antigen stimulated CD4+ T-
cells.70,77,79-81 Recently, a novel T-cell activation
marker-TB (TAM-TB) assay was described for
diagnosis of active TB in children.80 The TAM-
TB assay has been validated in an adult popu-
lation in Tanzania and is based on the ratio of
the median fluorescence intensity of all
CD4+CD27+ T-cells over the median fluores-
cence intensity of Mtb-specific CD4+CD27+ T-
cells (CD27 MFI ratio). This approach has also
been tested in an adult population from a low
TB endemic country and confirmed discrimi-
nation between different stages of TB infec-
tion.77

Another interesting blood-based study
showed that the expression of immune activa-
tion markers CD38 and HLA-DR and prolifera-
tion marker Ki-67 on Mtb-specific CD4+ T-cells
associated with Mtb load. The modulation of
these markers accurately distinguishes active
from LTBI with 100% specificity and over 96%
sensitivity. These markers also correctly classi-
fied individuals who had successfully complet-
ed TB therapy, indicating a correlation with
the decrease in mycobacterial load following
treatment.82 Interestingly, recently the T-cell
activation has been described also as an
immune correlate of risk for TB development
in BCG-vaccinated infants.83

Among the untargeted discovery approaches
to identify new markers for TB patients’ strati-
fication, the transcriptomic, proteomic, or
metabolomic approaches have been used.43,84

In particular Tientchieu et al. evaluated the
transcriptomic and metabolic profiles of sub-
jects infected with two different lineages of
Mtb, the M. africanum (Maf) and Mtb before
and after anti-TB therapy to access the differ-
ences in host factors and/or biological process-
es associated with disease pathology and
response to treatment. Peripheral blood gene
expression profiles were not different between
Maf- and Mtb-infected patients pre-treatment
but differed significantly post-treatment, and
these were mainly associated with immune

responses and metabolic diseases. Notably, the
upstream regulator hepatocyte nuclear factor
4-α regulated about 15% of the genes differen-
tially expressed between the groups post-treat-
ment. The serum metabolic profiles were sim-
ilar between Maf- and Mtb-infected patients
both pre- and post-treatment, but significantly
different between pre- and post-treatment, par-
ticularly in Mtb- than in Maf-infected groups.
Using different approaches, as the mass spec-
trometry or protein chip technology, it is possi-
ble to have a proteomic profiling of many pep-
tides when comparing TB patients and healthy
subjects. Analysis of sera for host markers
showed that transthyretin, C-reactive protein
and neopterin might discriminate TB patients
from subjects with other infectious and inflam-
matory conditions with high accuracy.85

Similarly, sputum may also be used to analyze
proteomic profiles, as data on smear-negative
vs. smear-positive TB patients were signifi-
cantly different from those found in control
subjects.86

Volatile organic compounds (VOCs) in
breath may contain biomarkers of active pul-
monary TB derived directly from the infectious
organism (e.g. metabolites of Mtb) and/or from
the infected host (e.g. products of oxidative
stress). A breath test based on the detection
and quantification of VOCs identified potential
biomarkers of active pulmonary TB with 85%
accuracy in symptomatic high-risk subjects.87

However, detection of VOCs is technically diffi-
cult because most breath VOCs is excreted in
picomolar concentrations (parts per trillion),

and most analytical instruments currently
used cannot detect VOCs at such low concen-
trations. 

Biomarkers to monitor tuber-
culosis therapy efficacy

The absence of satisfactory tools for moni-
toring TB therapy efficacy impedes optimal
clinical management of patients, especially for
extra-pulmonary TB where it is not possible to
detect Mtb in sputum,88,89 precluding the possi-
bility to make a link between sputum culture
and clinical outcome. The majority of publica-
tions investigating treatment response bio-
markers failed to articulate the intended use
and underlying TPP. Furthermore, most studies
compared changes in proposed biomarkers
over time during treatment without testing, or
being powered to test, the correlation with
patient outcome, i.e., relapse-free cure (Figure
2). Study comparisons of Xpert MTB/RIF, smear
microscopy and culture using both solid and
liquid media have shown that the Xpert
MTB/RIF assay has high sensitivity (97%) but
poor specificity (49%) to identify culture posi-
tive specimens when Xpert is used as a binary
readout. The quantitative measurement from
the Xpert MTB/RIF assay, showed that the
change in quantitative sputum bacterial load
correlated with smear grades, solid culture
grades, and time to liquid culture positivity.90

                             Review

Figure 2. Flow chart of the biomarkers to monitor TB therapy efficacy. TB: tuberculosis;
Ag: antigen; LAM: lipoarabinomannan; VEGF: vascular endothelial growth factor; BAL:
broncholavage; IP: Interferon-γ inducible protein; FACS: Fluorescence-activated cell
sorting; IL: interleukin; PSME1: proteasome activator complex subunit 1; SAA: serum
amyloid A; PET/CP: positron emission tomography/computed tomography.
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This quantitative data may be used in the
future to predict clinical outcome of patients.
Considering that the Xpert MTB/RIF test
detects DNA from dead as well as live Mtb, a
recent study proposed to perform the quench-
ing of DNA detection from dead mycobacteria
by adding propidium monoazide (which
quenches PCR-mediated detection of DNA
from dead mycobacteria) to specifically detect
only viable bacilli.91 This test seems promising
since a positive correlation with time to posi-
tivity of Mtb cultures on liquid media was
reported. Concerning the host side, the devel-
opment of biomarkers able to monitor Mtb load
is still far from reality. Recently, Cliff et al.
reported that cytotoxic cell gene expression
signatures, expressed at diagnosis might pre-
dict disease relapse after initial successful
cure (sputum conversion), indicating that host
factors are important indicators of treatment
success.22 The first profiles of a response to TB
therapy were reported by Joosten et al.23 These
promising data need to be confirmed in large-
scale studies. Many efforts have evaluated dif-
ferent proteins in e.g. serum or plasma sam-
ples. It has been shown that plasma vascular
endothelial growth factor (VEGF)92 concentra-
tions at 2 weeks of therapy correlated positive-
ly with time to sputum conversion. Similarly,
hemeoxygenase-1 (HO-1) and matrix metallo-
proteinases (MMPs) levels correlated with
clinical outcome of pulmonary TB, although
contrasting findings were reported.93 This is
likely due to the inhibition of MMP by CO, a
product of Mtb-induced HO-1 activity, observed
in vitro after infection with Mtb in human
macrophages.94 Other factors as IL11 receptor
antagonist, 2-antiplasmin, proteasome activa-
tor complex subunit 1, and serum amyloid A
predicted sputum conversion with an estimat-
ed 80% sensitivity and specificity.95

The chemokine IP10 that has increased in
the unstimulated plasma of children and adults
with active TB has also been measured in dry
plasma spots as biomarker for therapy
response.54-58,96 In addition, IP10 kinetics in the
first week of TB therapy has been proposed as
a tool to confirm a clinical diagnosis and guide
specific therapy.97

Radiological severity has been classified
with different scores to predict treatment out-
come in adults with pulmonary TB using differ-
ent tools.98,99 High-resolution 3-dimensional
imaging helps evaluating the pulmonary TB
burden during therapy.100 In the lungs, a quan-
titative volumetric change in the uptake of 2-
deoxy-2-[18F]-fluro-D-glucose (FDG) after 2
and 6 months of TB therapy has been detected
by positron emission tomography/computed
tomography (PET/CT) quantification and this
modulation could be correlated with treatment
outcome. However, due to machine equipment,
complexity, cost and radiation exposure, the
use of PET/CT approach is still restricted to

clinical trials. As reported above modulation of
CD27 evaluated by flow cytometric studies may
be a novel marker not only for active TB diag-
nosis but also therapy monitoring.70,77,80,81 The
same may hold true for the modulation of
CD38, HLA-DR and proliferation marker Ki-
67.82

In analogy to cancer, an expansion of
myeloid derived suppressor cells (MDSCs),
which have a remarkable ability to suppress T-
cell responses,101,102 has been observed in the
lung and blood of patients with active TB
whereas a contraction is reported after effica-
cious anti-TB therapy.102

TB therapy significantly decreased the in
vitro IFNγ response induced by peptides select-
ed from ESAT-6 and CFP-10 in patients with
active TB in studies conducted in Europe,103,104

Uganda,105 and India,106 suggesting that this
response can be a tool to monitor anti-TB
treatment efficacy. The results have been con-
firmed using IP10 instead of IFNγ.106,107

Biomarkers for latent tubercu-
losis infection identification

Using a clinically pragmatic approach, LTBI
is defined by the presence of a specific
immune response detected by an IFNγ release
assay (IGRA) or the tuberculin skin test (TST)
(Figure 3) in the absence of lung lesions of
active TB in xRay images, in individuals from
whom it is not possible to isolate Mtb.108 IGRA
[QuantiFERON TB Gold in tubes (Qiagen,
Venio, the Netherlands; QFT-GIT) and T-
SPOT.TB (Oxford Immunotec, Marlborough,
MA, USA)] measure in vitro IFNγ production

by whole blood ELISA109 or an enzyme-linked
immunospot (ELISPOT)110 assay on peripheral
blood mononuclear cells (PBMC),
respectively.109,110 Blood is stimulated with Mtb-
specific antigens,111 which are deleted from
the genome of M. bovis BCG and are not pres-
ent in most environmental mycobacteria.112-115

TST is based on skin infiltration caused by
intradermal injection of purified protein deriv-
ative (PPD), which is a crude mixture of anti-
gens many of which are shared by Mtb, M.
bovis, BCG and several species of environmen-
tal mycobacteria. A particular benefit of in
vitro testing is that there is a laboratory test
with negative and positive controls, and that
one visit suffices. In contrast to the TST, these
in vitro tests may discriminate true negative
responses from energy.116 Recently an updated
version of the QFT-GIT has been launched
(https://www.qiagen.com/it/about-us/press-
releases/pressreleaseview?id=%7Bc861949e-
df50-475b-8148-b4c70034c49e%7D&lang=en).
Results from ongoing studies will show if

the test has a better accuracy compared to the
old QFT-GIT.117 It should be noted that both TST
and IGRAs share limitations: a low accuracy in
immune-compromised patients, impossibility
to distinguish between LTBI and active dis-
ease, which is a major issue in TB endemic
areas, and low predicting values for active TB
diagnosis.118-119

Several efforts have been undertaken to dis-
tinguish LTBI from active TB, with no clear
success probably due to the fact that LTBI is
characterized by a high heterogeneity of TB
lesions that may depict as a broad spectrum of
conditions that overlap in part with those seen
in active disease.120 Some subjects show only
the remnant of a waning infection, while oth-
ers show a slowly progressing form of disease,
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Figure 3. Flow chart of the biomarkers for LTBI identification: LTBI: latent tuberculosis
infection; TST: tuberculin skin test; IGRA: IFNγ release assay; Interferon-γ inducible
protein; IL: interleukin; PSME1: proteasome activator complex subunit 1; EGF:
endothelial growth factor; MCP: monocyte chemoattractant protein; TLR: toll like
recepetors; sCD14: soluble CD14; FACS: Fluorescence-activated cell sorting; ICS: intra-
cellular staining.
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or a chronic non-progressing infection.120

In the QFT-GIT format the chemokine IP10
has been suggested as an alternative marker
for IFNγ,106,121-123 with high accuracy in the HIV-
infected patients.122,124,125

Besides IGRA, several approaches for LTBI
identification have been proposed: evaluation
of plasma concentrations of epidermal growth
factor fractalkine, IFNγ, IL4, monocyte
chemoattractant protein (MCP)3, IP10;126 eval-
uation of serum pro-inflammatory cytokines
IL6, IP10, MCP1;127 detection of plasma levels
of markers involved in the Toll-like receptor 4
pathway, like soluble CD14 and myeloid differ-
entiation-2.128 A recent study on LTBI subjects
demonstrated that Mtb-specific CD4+ T-cells
have a characteristic chemokine expression
signature (CCR6+CXCR3+CCR4-), and that the
frequency of these cells is increased in LTBI
subjects compared with healthy donors (129).
This study suggested a possible role of specific
subsets of CD4+ T-cells in the containment of
Mtb and raises interesting questions on the
possible role of these cells. In particular the
transcriptional profile of CCR6+CXCR3+CCR4-

CD4+ T revealed characteristics important for
TB containment, since gene expression pro-
files correlated with TB susceptibility genes,
enhanced T-cell activation, cell survival and
cytotoxic response.129 Stimulation with the so
called Mtb latency antigens, such as Rv1733c,
Rv2029c, Rv2628 and HBHA,130-136 seem prom-
ising tools to identify LTBI subjects and distin-
guish recent LTBI from remote LTBI.130,137,138 If
confirmed in larger studies, these results may
have important implications for risk stratifica-
tion when deciding to initiate preventive ther-
apy.130,138,139

Biomarkers for prevention:
vaccine studies

As discussed above, among the T-cell based
biomarkers, polyfunctional T-cells have been
explored as potential biomarkers by multipara-
metric flow technology. In animal models, i.e.
mice, vaccine-induced protection against Mtb
infection strongly correlated with a high fre-
quency of polyfunctional CD4+ T-cells.140,141

However the correlation of this polyfunctional
cytokine profile with protective efficacy of BCG
vaccination was absent in humans, as reported
in a cohort of BCG-immunized infants moni-
tored for 2 years.142 Similar results were
obtained in a TB vaccine study based on
MVA85A (modified vaccinia virus Ankara
expressing antigen 85A.143 In addition, poly-
functional T-cells have been reported at
increased frequencies in active TB.74 These
studies suggest that polyfunctional T-cells play
a role in vaccine induced protection against TB
in animal models, but do not represent a corre-

late of BCG-induced or natural protection in
humans, as they are also present in active
TB.74,144 Th17 cells are capable of providing pro-
tection in immunization and cellular transfer
mouse models.145-147 Th17 cells are long lived
and can become memory cells, despite
expressing markers characteristic of terminal-
ly differentiated cells,148 and have self-renewal
capacities.149 Th17 cells preserve the molecular
signature that is characteristic of T stem cell
memory (TSCM).150-152 IL17 seems to play an
important role in Mtb protection. It has been
shown that mice lacking IL17A receptor,
despite being able to control acute infection,
are unable to stably maintain long-term control
of Mtb infection.153 This is due to decreased
early neutrophil recruitment, more than IFNg
deficiency. Recently it has been shown that the
requirement for IL17 in host protection against
Mtb in the mouse model is Mtb strain depend-
ent. IL17 was dispensable for protective immu-
nity against the lab-adapted strain H37Rv
while necessary for protection against Mtb
HN878, a hypervirulent Mtb strain.154 IL17 is
important in vaccine-mediated protection in
TB. Following BCG and ESAT-6 peptide immu-
nization,155,156 antigen-specific Th17 cells local-
ized in the lungs and were critical for the
recruitment of Th1 cells to the lung after Mtb
challenge. Innate immune responses are con-
ventionally thought to provide immediate pro-
tection before the adaptive immune response
is generated, thus contributing towards early
containment of the pathogen. However, a
growing number of studies suggests their
involvement in the recall response and protec-
tion during secondary challenge, as shown by
the generation and long-term maintenance of
NK cells in response to viral infections such as
those with cytomegalovirus (CMV) and hepati-
tis C virus (HCV).157 There are studies ongoing
to evaluate the role of NK memory cells in Mtb
protection. γdT-cells recognize a variety of
unrestricted, unprocessed and small phos-
phate antigens.158 In the mouse model, during
the early phase of infection with Mtb, γdT-cells
secreting IFNγ and IL17 with cytotoxic effector
functions are recruited to the lungs.159

Expansion of γdT-cells in response to BCG vac-
cination and their presence in Mtb-specific
recall response are also reported in the nonhu-
man primate macaque model.160 In addition,
γdT-cells reduce the viability of intracellular
Mtb via mechanisms dependent on perforin or
granulysin.161,162 These data, together, indicate
not only that γdT-cells are present during Mtb
infection and following BCG vaccination but
that, in humans, they are capable of restricting
Mtb growth. Also many other components of
the innate immune system participate in the
control of Mtb infection, but this is beyond the
scope of this brief review.144

Conclusions

There is a pressing need for new biomark-
ers in TB at all different levels discussed
above.144,163 Though studies on new candidate
biomarkers are numerous, validation and
independent confirmation are rare, unfortu-
nately. Efforts are needed to reduce the gap
between the exploratory up-stream identifica-
tion of candidate biomarkers, the validation of
biomarkers against clear clinical endpoints in
different populations, and the development of
simple point of care tests for use in low
resourced settings.20 This needs important
commitment from both researchers and eco-
nomic funders.
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