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Abstract

Tumor microenvironment (TME) cells constitute a vital

element of tumor tissue. Increasing evidence has elucidated

their clinicopathologic significance in predicting outcomes

and therapeutic efficacy. Nonetheless, no studies have

reported a systematic analysis of cellular interactions in the

TME. In this study, we comprehensively estimated the TME

infiltration patterns of 1,524 gastric cancer patients and sys-

tematically correlated the TME phenotypes with genomic

characteristics and clinicopathologic features of gastric cancer

using two proposed computational algorithms. Three TME

phenotypes were defined, and the TMEscore was constructed

using principal component analysis algorithms. The high

TMEscore subtype was characterized by immune activation

and response to virus and IFNg . Activation of transforming

growth factor b, epithelial–mesenchymal transition, and

angiogenesis pathways were observed in the low TMEscore

subtype, which are considered T-cell suppressive and may be

responsible for significantly worse prognosis in gastric cancer

[hazard ratio (HR), 0.42; 95% confidence interval (CI), 0.33–

0.54; P < 0.001]. Multivariate analysis revealed that the

TMEscore was an independent prognostic biomarker, and its

value in predicting immunotherapeutic outcomes was also

confirmed (IMvigor210 cohort: HR, 0.63; 95% CI, 0.46–0.89;

P ¼ 0.008; GSE78220 cohort: HR, 0.25; 95% CI, 0.07–0.89;

P ¼ 0.021). Depicting a comprehensive landscape of the TME

characteristics of gastric cancermay, therefore, help to interpret

the responses of gastric tumors to immunotherapies and

provide new strategies for the treatment of cancers.

Introduction

Genomic analysis has been the primary methodology used in

international efforts to discover novel biological targets in gastric

cancer (1, 2), although this method has not led to the successful

discovery of distinct mechanisms. However, some studies have

revealed the significance of tumor-related structures, as well as

upregulated signalingpathways inboth cancer cells and the tumor

microenvironment (TME; refs. 3, 4), suggesting that intercellular

relationships are more important than genomic factors at the

single-cell level (5, 6). An increasing body of literature suggests a

crucial role for the TME in cancer progression and therapeutic

responses (7, 8). For example, differences in the compositions of

resident cell types within the TME, including cytotoxic T cells,

helper T cells, dendritic cells (DCs), tumor-associated macro-

phages, mesenchymal stem cells, and associated inflammatory

pathways, have been reported in patients with cancer (5, 6, 9, 10).

The TME context determined at diagnosis reflects the immune

response (11) and chemotherapy benefit (8), and changes in the

numbers of CD8þ T cells, CD4þ T cells, macrophages, and cancer-

associatedfibroblasts infiltrating in the TME correlatewith clinical

outcomes in various malignancies, including gastric cancer,

melanoma, urothelial cancer, lung cancer, and breast cancer

(10, 12–14).

Because gastric cancers are significantly associated with infec-

tious agents, most notably Helicobacter pylori and Epstein–Barr

virus (EBV), biomarkers that can predict responsiveness to

immune-checkpoint blockade are being extensively investigated

to further improve precision immunotherapy (15). The abun-

dance of immune cells and other cells in the TME can be estimated

using computational methods (16–18). Although several studies

using these methodologies have explored the clinical utility of

TME infiltrates (7, 19), and although several mechanisms asso-

ciated with the role of TME in immunotherapy response and

resistance have been experimentally identified for some tumor

types (4, 13, 14, 20, 21), to date, the comprehensive landscape of

cells infiltrating the TME has not yet been elucidated.

In the present study, two proposed computational algo-

rithms (16, 17) were used to estimate the fractions of 22 immune

cell types and cancer-associated fibroblasts based on clinically

annotated gastric cancer gene-expression profiles (1, 22). We

estimated the TME infiltration patterns of 1,524 tumors from
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patients with gastric cancer, and systematically correlated the

TME phenotypes with genomic characteristics and clinical and

pathologic features of gastric cancer. As a result, we established

a methodology to quantify the TME infiltration pattern

(TMEscore). The TMEscore was found to be a robust prognostic

biomarker and predictive factor for response to immune-check-

point inhibitors.

Materials and Methods

Gastric cancer data sets and preprocessing

We systematically searched for gastric cancer gene-expression

data sets that were publicly available and reported full clinical

annotations. Patientswithout survival informationwere removed

from further evaluation. In total, we gathered seven treatment-

na€�ve cohorts of samples from patients with gastric cancer for this

study: ACRG/GSE62254, GSE57303, GSE84437, GSE15459,

GSE26253, GSE29272, and TCGA-STAD. The raw data from the

microarray data sets generated by Affymetrix and Illumina were

downloaded from the Gene-Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo/). The raw data for the data set

from Affymetrix were processed using the RMA algorithm for

background adjustment in the Affy software package (23). RMA

was used to perform background adjustment, quantile normal-

ization, and final summarization of oligonucleotides per tran-

script using the median polish algorithm. The raw data from

Illumina were processed using the lumi software package.

The procedure used for data set selection in the GEO

database was as follows. The following search parameters were

used: (((survival OR prognosis OR prognostic OR outcome OR

death OR relapse OR recurrence))) AND ((gastric cancer[MeSH

Terms]) OR ((((((((((gastric cancer[Title]) OR gastric

adenocarcinoma[Title]) OR gastric neoplasm[Title]) OR gastric

tumor[Title]) OR gastric carcinoma[Title]) OR stomach

cancer[Title]) OR stomach adenocarcinoma[Title]) OR stom-

ach neoplasm[Title]) OR stomach tumor[Title]) OR stomach

carcinoma[Title])). In the initial search, 656 items were rec-

ognized, and only the first 100 were independent chip series.

Among the 100 series, 32 contained mRNA expression profiles

of cancer tissues from patients with gastric cancer. Two addi-

tional series were subsequently identified from the subseries

list of the corresponding super series, and one additional series

was identified from the related literature. Among the 35 items,

three were repeated; nine items included fewer than 40

patients; and four were derived from high-throughput

sequencing data. Among the remaining, we only obtained

survival data for the following six items: GSE62254/ACRG,

GSE15459, GSE29272, GSE84437, GSE26253, and GSE57303.

The patients related to these six data sets were included for

further analysis.

Level 4 gene-expression data (FPKM normalized) of The

Cancer Genome Atlas (TCGA) were downloaded from the

UCSC Xena browser (GDC hub: https://gdc.xenahubs.net). For

TCGA data set, RNA-sequencing data (FPKM values) were

transformed into transcripts per kilobase million (TPM) values,

which are more similar to those resulting from microarrays and

more comparable between samples (24). Platforms, numbers

of samples, baseline information, and clinical end points of

each eligible GC data set are summarized in Supplementary

Table S1. Data were analyzed with the R (version 3.4.0) and R

Bioconductor packages.

Collection of clinical and genome-related data

The corresponding clinical data from these data sets were

retrieved and manually organized when available. For some

series, clinical data not attached to gene-expression profiles were

obtained through one of the following three methods: (i)

directly downloaded from the corresponding item page in the

GEOdata setwebsite, (ii) from the supplementarymaterials in the

relative literature, and (iii) using the GEOquery package in R.

Corresponding authors were contacted for further information

where necessary. Updated clinical data and sample information

for TCGA-STAD samples were obtained from the Genomic Data

Commons (https://portal.gdc.cancer.gov/) using the R package

TCGAbiolinks (25). Overall survival information of all TCGA

data sets was obtained from the supplementary data of published

research (26). Somatic mutation data (SNPs and small INDELs,

MuTect2 Variant Aggregation and Masking) for STAD patients

wereobtained (https://gdc.xenahubs.net/download/TCGA-STAD/

Xena_Matrices/TCGA-STAD.mutect2_snv.tsv.gz). Thenumbers of

predicted neoepitopes based on tumor-specific HLA typing, total

mutations, andCYT signature score for eachpatientwere obtained

for 263 STAD samples from the supplementary table of Rooney

and colleagues (27). Somatic copy-number alterations, immune

signature scores, and cell-cycle signature scores were obtained

for 269 STAD samples from the supplementary table of Davoli

and colleagues (28), which can be accessed by the link: http://

science.sciencemag.org/highwire/filestream/689461/field_

highwire_adjunct_files/7/aaf8399-Davoli-SM-table-S7.xlsx.

Inference of infiltrating cells in the TME

To quantify the proportions of immune cells in the gastric

cancer samples, we used the CIBERSORT algorithm (16) and the

LM22 gene signature, which allows for sensitive and specific

discrimination of 22 human immune cell phenotypes, including

B cells, T cells, natural killer cells,macrophages, DCs, andmyeloid

subsets. CIBERSORT is a deconvolution algorithm that uses a set

of reference gene-expression values (a signature with 547 genes)

considered aminimal representation for each cell type and, based

on those values, infers cell type proportions in data from bulk

tumor samples with mixed cell types using support vector regres-

sion. Gene-expression profiles were prepared using standard

annotation files, and data were uploaded to the CIBERSORT web

portal (http://cibersort.stanford.edu/), with the algorithm run

using the LM22 signature and 1,000 permutations. Proportions

of stromal cells were estimated by applying the Microenviron-

ment Cell Populations-counter method, which allows for robust

quantification of the absolute abundance of eight immune and

two stromal cell populations in heterogeneous tissues from

transcriptomic data (17).

Consensus clustering for TME-infiltrating cells

Tumors with qualitatively different TME cell infiltration pat-

terns were grouped using hierarchical agglomerative clustering

(based on Euclidean distance and Ward's linkage). Unsupervised

clustering methods (K-means; ref. 29) for data set analysis were

used to identify TME patterns and classify patients for further

analysis. A consensus clustering algorithm was applied to deter-

mine the number of clusters in themeta-data set andAsianCancer

Research Group (ACRG) cohort to assess the stability of the

discovered clusters. This procedure was performed using the

ConsensuClusterPlus R package (30) and was repeated 1,000

times to ensure the stability of classification.
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Differentially expressed genes (DEG) associated with the TME

phenotype

To identify genes associatedwith TME cell–infiltrating patterns,

we grouped patients into TMEclusters based on immune-cell

infiltration. DEGs among these groups were determined using

the R package limma (31), which implements an empirical

Bayesian approach to estimate gene-expression changes using

moderated t tests. DEGs among TME subtypes were determined

by significance criteria (adjusted P value <0.05) as implemented

in the R package limma. The adjusted P value for multiple testing

was calculated using the Benjamini–Hochberg correction (32).

Dimension reduction and generation of TME gene signatures

The construction of TMEmetagenes was performed as follows.

First, each DEG among TMEclusters was standardized across all

samples in the ACRG cohort. An unsupervised clustering method

(K-means; ref. 29) for analysis of DEGs was used to classify

patients into several groups for further analysis. Then, the random

forest classification algorithm was used to perform dimension

reduction in order to reduce noise or redundant genes (33). Next,

the clusterProfiler R package (34) was adopted to annotate gene

patterns. A consensus clustering algorithm (30) was applied to

define the cluster of genes. For gene-expression (normalized by

RMA or TPM methods) analysis, the expression of each gene in a

signature was first transformed into a z-score. Then, a principal

component analysis (PCA) was performed, and principal com-

ponent 1 was extracted to serve as the signature score. This

approach has the advantage of focusing the score on the set with

the largest block of well-correlated (or anticorrelated) genes in

the set, while downweighting contributions from genes that do

not track with other set members. After obtaining the prognostic

value of each gene signature score, we applied amethod similar to

GGI (35) to define the TMEscore of each patient:

TMEscore ¼
X

PC1i �
X

PC1j

where i is the signature score of clusters whose Cox coefficient is

positive, and j is the expression of genes whose Cox coefficient

is negative.

Functional and pathway enrichment analysis

Gene annotation enrichment analysis using the clusterProfiler

R package (34) was performed on TME signature genes. Gene

Ontology (GO) terms were identified with a strict cutoff of

P < 0.01 and false discovery rate (FDR) of less than 0.05. We

also identified pathways that were up- and downregulated among

TMEgene clusters A andC for a certain TMEphenotypeby running

a gene set enrichment analysis (GSEA; ref. 36) of the adjusted

expression data for all transcripts. Gene sets were downloaded

from the MSigDB database of the Broad Institute (36), and

HALLMARK gene sets were selected to perform quantification of

pathway activity. Enrichment P values were based on 10,000

permutations and subsequently adjusted for multiple testing

using the Benjamini–Hochberg procedure to control the

FDR (32). A developing R package enrichplot (https://github.

com/GuangchuangYu/enrichplot), implements several visualiza-

tion methods to help interpreting enrichment results and was

adopted to visualize GSEA result of TME gene clusters. To explore

the correlation between the TME signature and other relevant

biological processes, we used gene sets curated by Mariathasan

and colleagues (13), including (i) CD8 T-effector signature (11);

(ii) antigen processingmachinery (37); (iii) immune-checkpoint;

(iv) epithelial–mesenchymal transition (EMT) markers previous-

ly reported (38); (v) pan-fibroblast TGFb response signature

(Pan-F-TBRS; ref. 13); (vi) DNA replication–dependent his-

tones (13); (vii) selectmembers of theDDR-relevant gene set (39);

(viii) Angiogenesis signature previously reported (40); (ix) cell-

cycle genes (KEGG); (x) WNT targets (41); (xi) cell-cycle regula-

tors (42); (xii)mismatch repair (KEGG); (xiii) nucleotide excision

repair (KEGG); (xiv) homologous recombination (KEGG).

Genomic and clinical data sets with immune-checkpoint

blockade

Five genomic and transcriptomic data sets from patients with

metastatic urothelial cancer (13) treatedwith ananti–PD-L1 agent

(atezolizumab), patients with metastatic melanoma (43) treated

with anti–PD-1 (pembrolizumab), patients with advanced mel-

anoma treated with various types of immunotherapies from the

TCGA-SKCM cohort (44), patients with advanced melanoma

treated with MAGE-3 antigen–based immunotherapy (45), and

a mouse model treated with anti–CTLA-4 (46) were downloaded

and analyzed to determine the predictive value of the TMEscore.

For the urothelial cancer data set, a fully documented software

and data package is freely available under the Creative Commons

3.0 license and can be downloaded from http://research-pub.

gene.com/IMvigor210CoreBiologies. After quality control using

the R package arrayQualityMetrics, count data were normalized

using the trimmedmean ofM-values and transformedwith voom

to log2-counts permillion with associated precision weights (31).

For the melanoma data set (GSE78220, N ¼ 28), expression

profiles (FPKMnormalized) andphenotypes have beendeposited

into theGEOunder the accession codeGSE78220. The expression

profiles (FPKM normalized) of GSE78220 were transformed into

TPM, converting FPKM data to values more comparable between

samples (24). For the TCGA-SKCM cohort, the expression profiles

(FPKM normalized) downloaded from the UCSC Xena browser

were transformed into TPM, which was used to calculate

TMEscore. For themelanoma cohort (GSE35640,N¼ 55) treated

with MAGE-3 antigen-based immunotherapy, the raw data were

downloaded and processed using the RMA algorithm for back-

ground adjustment using the Affy package (23). For the mouse

model treated with CTLA-4 blockade (accession number

GSE63557, N ¼ 20), the normalized data were obtained from

GEO and annotated with the GPL19103 profile.

Statistical analysis

The normality of the variables was tested by the Shapiro—Wilk

normality test (47). For comparisons of two groups, statistical

significance for normally distributed variables was estimated by

unpaired Student t tests, and nonnormally distributed variables

were analyzed by Mann–Whitney U tests (also called the

Wilcoxon rank-sum test). For comparisons of more than two

groups, Kruskal–Wallis tests and one-way analysis of variance

were used as nonparametric and parametric methods, respective-

ly (48). Correlation coefficients were computed by Spearman and

distance correlation analyses. Two-sided Fisher exact tests were

used to analyze contingency tables. The cutoff values of each data

set were evaluated based on the association between patient

overall survival and TMEscore in each separate data set using the

survminer package. The R package MaxStat (49), which iteratively

tests all possible cut points to find the one achieving the maxi-

mum rank statistic, was used to dichotomize TMEscore, and

Cellular Landscape of Gastric Cancer TME and Relevant Signatures
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patients were then grouped into low and high TMEscore subtype

in each data set to reduce computational batch effect. R package

forestplot was used for presentation of the results of subgroup

analysis of TMEscore in gastric cancer data sets and TCGA pan

cancer data sets. To identify significant genes in the differential

gene analysis, we applied the Benjamini–Hochberg method to

convert the P values to FDRs (32). The Kaplan–Meiermethodwas

used to generate survival curves for the subgroups in each data set,

and the log-rank (Mantel–Cox) test was used to determine the

statistical significance of differences. The hazard ratios for uni-

variate analyses were calculated using a univariate Cox propor-

tional hazards regression model. A multivariate Cox regression

model was used to determine independent prognostic factors

using the survminer package. The package pROC (50) was used to

plot and visualize receiver operating characteristic (ROC) curves

to calculate the area under the curve (AUC) and confidence

intervals to evaluate the diagnostic accuracy of tumor mutational

burden (TMB), TMEscore, and the combination of them. For

comparison of AUCs, likelihood ratio test for two correlated

ROC curves was used. R package ggtree (51) was used to

visualize phylogenetic trees of the TME signature genes. All heat

maps were generated by the function of pheatmap (https://

github.com/raivokolde/pheatmap). OncoPrint used to depict

mutation landscape of TCGA-STAD cohort was constructed by

ComplexHeatmap R package (52). All statistical analyses were

conducted using R (https://www.r-project.org/) or SPSS software

(version 25.0), and the P values were two-sided. P values of less

than 0.05 were considered statistically significant.

Results

Landscape of gastric cancer TME

The construction scheme of TME cell-infiltrating patterns and

TME signatures was systematically evaluated (Supplementary

Fig. S1A). To select the optimal cluster number, we assessed

clustering stability using the ConsensusClusterPlus package

(Supplementary Fig. S1B; ref. 30), which supported the existence

of three robust subtypes of gastric cancer in a meta-cohort

(GSE57303, GSE34942, GSE84437, ACRG/GSE62254,

GSE15459, GSE29272, and TCGA-STAD). Unsupervised hierar-

chical clustering of the 1,524 tumors with matched TME cell

expression profiles from the above independent gastric cancer

cohorts was performed, and the results are shown in Supplemen-

tary Fig. S1C and Supplementary Table S2. The TME cell network

depicted a comprehensive landscape of tumor–immune cell

interactions, cell lineages, and their effects on the overall survival

of patients with gastric cancer (Fig. 1A; Supplementary Tables S3–

S4). Three main TME cell infiltration subtypes revealed by

the data showed significant differences in survival (log-rank test,

P < 0.001; Fig. 1B).

To further characterize and understand the biological and

clinical differences among these intrinsic phenotypes, we focused

on the ACRG cohort (containing 299 patients with gastric cancer),

not merely because it contained the most patients and provided

the most comprehensive patient information (Supplementary

Table S5), but also because the CIBERSORT algorithm was more

suitable to deconvolve microarray data from the Affymetrix

platform. Cluster analysis revealed three distinct patterns of TME

cell infiltration as all gastric cancer data sets exhibited (Supple-

mentary Fig. S2A–S2D): TMEcluster-A was characterized by

increases in the infiltration of cancer-associated fibroblasts, M2

macrophages, resting DCs, and resting mast cells (MC;

refs. 53–56) and exhibited variable decreases in other TME cell

types; TMEcluster-B exhibited high infiltration of M0 macro-

phages, neutrophils, activated DCs, and activated MCs; and

TMEcluster-C showed significant increases in the infiltration of

CD8þ T cells, M1 macrophages, and activated memory CD4þ T

cells (refs. 53, 54, 57; Fig. 1C). The significant differences in

TME cell infiltration in the three main TME phenotypes were

confirmed with Kruskal–Wallis tests (Supplementary Fig. S2E;

results of pairwise comparison were summarized in Supplemen-

tary Table S6).

In terms of clinical characteristics, TMEcluster-A was associated

with a higher "Immunoscore" (Kruskal–Wallis, P < 2.2 � 10�16;

Supplementary Fig. S2E; Supplementary Table S6), which we

established based on a lasso immune signature score model in

a previous study (7) to predict survival outcomes in patients with

gastric cancer. We also observed that samples in TMEcluster-A

exhibited poorer tumor differentiation and were enriched in the

EMT molecular subtype. The opposite patterns were observed in

TMEcluster-C (Fig. 1C). Survival analysis based on the TME

phenotype showed TMEcluster-A (83 patients) to be significantly

associated with poorer prognosis and TMEcluster-C (119

patients) to be associated with better prognosis (log-rank test,

P < 0.001). Of the 299 patients with gastric cancer, 97 belonged

to TMEcluster-B, which was characterized by an intermediate

prognosis (log-rank test, P < 0.001; Fig. 1D).

Construction of the TME signature and functional annotation

To identify the underlying biological characteristics of each

TME phenotype, unsupervised analysis of 1,033 DEGs acquired

by the limma package (58) was used to classify patients into

genomic subtypes, which was significantly consistent with the

clustering results of the TME phenotype groups (c2 contingency
tests, P < 2.2 � 10�16). The matching rate of the TME cell clusters

and TME gene clusters was 80.5%, 61.5%, and 40% for TME gene

cluster C, TME gene cluster A, and TME gene cluster B, respectively

(Supplementary Fig. S2F–S2G; Supplementary Table S7). Next,

we sought to use random forest algorithms to perform dimension

reduction to extract the phenotype signatures. The unsupervised

hierarchical cluster analysis was based on the expression of the

238 most representative DEGs (Supplementary Table S8) and

separated the ACRG cohort population into three distant patient

clusters, termed gene clusters A–C (Fig. 2A). We visualized

changes in clusters using an alluvial diagram (Supplementary

Fig. S3A). Analysis also revealed two significant expression gene

sets (Supplementary Fig. S3B; Supplementary Table S7).

GO enrichment analysis of the signature genes was conducted

using the R package clusterProfiler. Significantly enriched biolog-

ical processes are summarized in Supplementary Table S9. Gene

clusters A and C showed enrichment of distinct biological pro-

cesses. Overexpression of genes involved in immune activation,

which were enriched in gene cluster C, correlated with good

prognosis in gastric cancer, and upregulated stroma-related genes,

whichwere enriched in gene cluster A,were associatedwithpoorer

prognosis (log-rank test, P < 0.001; refs. 10, 20, 21; Fig. 2B–D;

Supplementary Table S9). The clusterProfiler R package was used

to discover the potential regulatory relationships among the TME

signature mRNAs in gastric cancer, and these results suggested

that the pathways involved in the EMT and immune activation

exhibited a significant amount of overlap with other pathways

(Supplementary Fig. S3C). Figure 2E indicates that the significant

Zeng et al.
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differences in TME cell infiltration and the "Immunoscore" in

the three TME gene clusters were consistent with the outcomes

of TME cell-infiltrating patterns (Supplementary Fig. S2E), as

expected. Robust correlations between TME signature scores and

TME cell-infiltrating patterns were also validated in theGSE15459

and TCGA-STAD data sets (Supplementary Fig. S4A–S4H).

Transcriptome traits and clinical characteristics of TME

phenotypes

Next, we defined two aggregate scores using the PCA algorithm:

TMEscore A from TME signature genes A and TMEscore B from

TME signature genes B (Fig. 2A; Supplementary Table S9). We

computed TMEscore A and TMEscore B for each sample in the

study as the sum of the relevant individual scores. To this end, we

obtained the prognostic signature score, which we termed the

TMEscore. In order to analyze the cytokine and chemokinemilieu

characterizing each gene cluster (Fig. 2A), we analyzed the expres-

sionof selected cytokine and chemokinemRNAs in the 299gastric

cancer samples. We considered CXCL10, CXCL9, GZMA, GZMB,

PRF1, CD8A, IFNG, TBX2, and TNF to be immune-activated–

related transcripts; IDO1, CD274, HAVCR2, PDCD1, CTLA4,

LAG3, and PDCD1LG2 to be immune-checkpoint–relevant tran-

scripts; and VIM, ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3,

SMAD9, TWIST1, and TGRB1 to be transforming growth factor

(TGF)b/EMT pathway–relevant transcripts. Gene cluster A was

associated with high expression of TGFb/EMT pathway–relevant
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Figure 1.

Landscape of the TME in gastric cancer and characteristics of TME subtypes.A, Cellular interaction of the TME cell types. Cell cluster A, blue; cell cluster B, red;

cell cluster C, brown; cell cluster D, orange. The size of each cell represents survival impact of each TME cell type, calculation used the formula log10 (log-rank test

P values indicated). Favorable factors for overall survival are indicated in green, and risk factors indicated in black. The lines connecting TME cells represent

cellular interactions. The thickness of the line represents the strength of correlation estimated by Spearman correlation analysis. Positive correlation is indicated

in red and negative correlation in blue. B, Kaplan–Meier curves for overall survival (OS) of 1,524 gastric cancer patients from seven gastric cancer cohorts

(GSE15459, GSE29272, GSE34942, GSE57303, ACRG/GSE62254, GSE84437, and TCGA-STAD) with the TME infiltration classes. The numbers of patients in

TMEcluster-A, -B, and -C phenotypes are n¼ 458, n¼ 625, and n¼ 441, respectively. Log-rank test shows overall P < 0.001. C, Unsupervised clustering of TME

cells for 299 patients in the ACRG cohort. Immuno-group (immunophenotype from a previous study; ref. 7), survival status, ACRG subtype, MSI status, histologic

subtype, gastric cancer grade, and TME cluster group are shown as patient annotations. D, Kaplan–Meier curves for OS of 299 patients in the ACRG cohort

showing the association between TME infiltration patterns and OS (log-rank test, P < 0.001).
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Figure 2.

Construction of TME signatures and functional annotation. A, Unsupervised analysis and hierarchical clustering of common DEGs based on expression data

derived from the ACRG cohort to classify patients into three groups: Gene clusters A–C. Immuno-group (immunophenotype from previous study; ref. 7), survival

status, ACRG subtype, MSI status, histologic subtype, and TMEcluster are shown as patient annotations. B, Kaplan–Meier curves for the three groups of patients.

Gene cluster A (n¼ 64), B (n¼ 158), and C (n¼ 77). Log-rank test showed an overall P < 0.001. C and D, GO enrichment analysis of the two TME relevant

signature genes—TME signature gene (C) A and (D) B. The x axis indicates the number of genes within each GO term. E, The fraction of TME cells in three gene

clusters. Within each group, the scattered dots represent TME cell expression values. We also plotted the Immunoscore of three gene clusters. The thick line

represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the

interquartile range. The statistical difference of three gene clusters was compared through the Kruskal–Wallis test. �, P < 0.05; �� , P < 0.01; ��� , P < 0.001;
���� , P < 0.0001.
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mRNAs, whereas expression of Th1/cytotoxic T lymphocyte

(CTL)–related mRNAs (ref. 59; particularly CXCL10, CXCL9,

IFNG, and GZMB) was relatively low (Supplementary Fig. S5A–

S5C, results of pairwise comparison are summarized in Supple-

mentary Table S6). This suggested that this cluster may be clas-

sified as the immune-suppressive group. In contrast, gene cluster

C, exhibiting theoppositemRNAexpression profile, was classified

as the immune-activated group. We also tested known signatures

within the gastric cancer data set to better describe the function-

ality of the TME signature genes (Fig. 3A; Supplementary Fig. S5D;

Supplementary Table S10). These analyses confirmed that TME-

score A was significantly associated with immune-relevant signa-

tures, whereas TMEscore B was associated with stromal-relevant

signatures (Fig. 3A).

Consistent with these findings, gene cluster A with the EMT

subtype (ACRGmolecular subtypes; ref. 22) was linked to a low

TMEscore (Fig. 3B, Kruskal–Wallis, P < 2.2� 10�16; Fig. 3C) and

was associated with a poorer outcome (Fig. 3B and D). Using

GSEA with all transcripts ranked by the log2 (fold change)

between clusters A and C, we found gene sets that were con-

sidered T-cell suppressive and exclusive (60–62) in TME gene

cluster A (Fig. 3E and F; Supplementary Table S11), including

gene sets related to the EMT, TGFb signaling, angiogenesis, and

hypoxia.

After having identified the TMEscore as an intrinsic gene-

expression signature closely linked to the stromal activation

program and immune activation process, we sought to determine

whether the TMEscore could accurately predict outcomes. The 299

patients in the ACRG cohort were, therefore, assigned to groups

based on high or low TMEscores using the cutoff value (0.661,

between third quantile to maximum) obtained with the survmi-

ner package. Five-year survival rates were 63% and 41% for the

high and low TMEscore groups, respectively (HR, 0.32; 95% CI,

0.20–0.54; P < 0.001; Fig. 3D). When the TMEscore signature was

evaluated as a continuous variablewith theCox regressionmodel,

the TMEscore model was determined to be an independent and

robust prognostic factor (HR, 0.64; 95%CI, 0.50–0.82; P < 0.001;
Supplementary Fig. S5E). The TMEscore was also investigated

specifically in patients with stage II–III disease in the ACRG series

to explore whether the application of adjuvant chemotherapy

affected the ability of the TMEscore to predict survival outcomes.

Patients were assigned to high and low TMEscore groups, and the

survival advantage of the high TMEscore groupwas obvious, both

in patients who received chemotherapy and in those who did not

(Fig. 3G; Supplementary Table S6).

TME characteristics of the TCGA subtype and cancer somatic

genome

TCGA has completed a comprehensive molecular characteri-

zation of gastric adenocarcinomas and has proposed subdividing

tumors into four subtypes (1). Differences in the molecular

subtypes were assessed in the TCGA-STAD series, and a higher

TMEscore was significantly associated with EBV infection,

microsatellite instability (MSI), and good prognosis in gastric

cancer, whereas the genome stable (GS) subtype had a lower

TMEscore (22) and was associated with poorer prognosis

(HR, 0.49; 95% CI, 0.31–0.76; P ¼ 0.002; Fig. 4A and B; Sup-

plementary Table S12). The MSI-high subtype, with the best

prognosis, had significantly higher TMEscores than the other two

subtypes (Kruskal–Wallis, P ¼ 9.2 � 10�12; Fig. 4C). Correlation

analyses between the known signatures and the TMEscore were

also validated in the TCGA-STAD cohort (Supplementary Fig.

S5F), and the results were consistent with those of the ACRG

cohort. The TMEscore model was again determined to be an

independent and robust prognostic biomarker (HR, 0.74; 95%

CI, 0.62–0.88; P < 0.001; Supplementary Fig. S5G).

A significant positive correlation between the TMEscore and

mutation load was found (Fig. 4D; Spearman coefficient: R ¼

0.514, P < 2.2� 10�16). Similar to the MSI subtype, patients with

EBV infection had significantly higher TMEscores and CTL infil-

tration than those with the genomically stable and chromosomal

instability (CIN) molecular subtypes (Kruskal–Wallis P < 2.2 �

10�16; Fig. 4B). Several studies have indicated that EBVþ gastric

cancer does not exhibit higher TMB or MSI, but can respond

to immune-checkpoint therapy (15, 63), suggesting that the

TMEscore may be more useful for predicting clinical benefits in

patients with gastric cancer treated with immunotherapy than

TMB or MSI. We next investigated the distributions of somatic

alterations and observed different patterns among gastric cancer

clusters in terms of gene mutations. By analyzing the mutation

annotation files of the TCGA-STAD cohort, we identified 33

variant mutated genes, which were associated with the TMEscore,

using random forest algorithm with 1,000 iterations

(ref. 33; Fig. 4E). Preclinical (64) and clinical (65) reports have

described associations between individual altered genes and

response or resistance to immune-checkpoint blockade. Relative-

ly few of these genes were exclusively correlated with sensitivity or

resistance in TCGA-STAD series, such as PIK3CA and PCDH10.

These datamayprovide a newperspective to study themechanism

of TME formation, as well as explore individual mutations and

their role in cancer immunity and immunotherapy.

The TMEscore predicts immunotherapeutic benefits

Upon stratificationof the samples according to specific data sets

(Fig. 5A), significant differences in overall survival were observed

between the low and high TMEscore groups for all gastric cancer

data sets except GSE57303 (HR, 0.41; 95% CI, 0.13–1.34), as

detailed in Supplementary Table S12. Except for TNM stage I

(HR, 0.58; 95% CI, 0.23–1.48), significant differences were

observed in the TMEscore among all other stages. Concurrently,

the prognostic value of the TME signature was also validated in

three other independent data sets (GSE15459: HR, 0.48; 95% CI,

0.29–0.77; GSE57303: HR, 0.41; 95% CI, 0.13–1.34; GSE84437:

HR, 0.24; 95% CI, 0.13–0.45; Supplementary Fig. S6A–S6C), as

well as in a combined set of thefive data sets (ACRG, TCGA-STAD,

GSE15459, GSE57303, and GSE84437; Supplementary Fig. S6D;

HR, 0.42; 95% CI, 0.33–0.54). The TMEscore was also predictive

for relapse-free survival in the GSE26253 cohort (Supplementary

Fig. S6E; HR, 0.63; 95% CI, 0.46–0.87). Finally, we evaluated the

prognostic value of the TMEscore in 14 independent TCGA cancer

cohorts including 7,241 tumors (Supplementary Table S13).

Although the results of subgroup analysis were heterogeneous,

the TMEscore was supported as a favorable prognostic biomarker

in seven independent TCGA cohorts (Fig. 5B), which were

acknowledged as hot tumors with diverse T-cell infiltration,

including breast cancer, colon cancer, melanoma, lung squamous

cell carcinoma, ovarian cancer, and cervical cancer.

Inhibition of immunologic checkpoints withmonoclonal anti-

bodies that block the T-cell inhibitorymolecules PD-L1 and PD-1

has emerged as an anticancer treatment with unprecedented and

synergistic survival benefits (66).We next explored the prognostic

value of the TMEscore for immune-checkpoint therapy by

Cellular Landscape of Gastric Cancer TME and Relevant Signatures
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Figure 3.

Transcriptome traits and clinical characteristics of TME phenotypes in the ACRG cohort. A, Gene clusters were distinguished by different signatures (immune-

relevant signature, mismatch-relevant signature, and stromal-relevant signature as indicated) and TMEscore. Gene cluster A (n¼ 64), B (n¼ 158), and C (n¼ 77).

Within each group, the scattered dots represent mean value of signature genes. The thick line represents the median value. The bottom and top of the boxes

are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. ���� , P < 0.0001. B, Alluvial diagram of TME

gene clusters in groups with different ACRG subtypes (EMT, MSI, MSS/TP53�, and MSS/TP53þ), TMEscores, and survival outcomes. C,Differences of TMEscore in

the ACRG subtype. The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The

whiskers encompass 1.5 times the interquartile range. The differences between every two groups were compared through the Kruskal–Wallis test. P values

indicated. D, Kaplan–Meier curves for high (n¼ 71) and low (n¼ 228) TMEscore patient groups in the ACRG subtype. Log-rank test, P < 0.001. E and F, GSEA of

hallmark gene sets downloaded from the MSigDB database. All transcripts were ranked by log2 (fold change) between TME gene clusters A and C (see Fig. 2A).

E, Enrichment plots showing the DNA repair (blue), IL6/JAK/STAT3 signaling (green), inflammatory response (red), IFNa response (orange), IFNg response

(purple), and MYC targets V2 (black) gene sets in the TME gene cluster C. F, Enrichment plots showing the apical junction (blue), acid metabolism (green), EMT

(red), hypoxia (orange), and TGFb signaling (purple) gene sets in the TME gene cluster A. Each run was performed with 1,000 permutations.G, Kaplan–Meier

curves for patients with stage II–III gastric cancer in the ACRG cohort stratified by both receipt of adjuvant chemotherapy (CT) and TMEscore. CT, high TMEscore

(n¼ 29); CT, low TMEscore (n¼ 90); no CT, high TMEscore (n¼ 11); and no CT low TMEscore (n¼ 6). Log-rank test shows an overall P < 0.001.

Zeng et al.

Cancer Immunol Res; 7(5) May 2019 Cancer Immunology Research744
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assigning patients in the IMvigor210 and GSE78220 cohorts to

high or low TMEscore groups. Patients with high TMEscores had

significantly longer progression-free survival than those with

lower TMEscores in both the IMvigor210 cohort (HR, 0.63;

95% CI, 0.46–0.89; Fig. 5C) and GSE78220 cohort (HR, 0.25;

95% CI, 0.07–0.89). The predictive value of the TMEscore to

checkpoint immunotherapy was also confirmed in IMvigor210

(Fig. 5C–F; Supplementary Fig. S7A–S7E) and GSE78220

(Fig. 5G–J; Supplementary Fig. S7F–S7G). TMEscores were not

associated with overall survival and response to treatment with

immunotherapy in the TCGA-SKCM cohort (HR, 0.48; 95% CI,

0.17–1.41; Supplementary Fig. S7H–S7J). However, this could be

due to the patients in the TCGA-SKCM cohort being from

different medical centers with different study designs and receiv-

ing various types of immunotherapy, including cytokines, vac-

cines, and checkpoint blockers. If bias is excluded, these results

suggest a potential limitation of the TMEscore at identifying

responders to different immunotherapies. In good agreement

with predicted outcomes of anti–PD-1 (GSE78220) and anti–

PD-L1 (IMvigor210) treatment, we validated the predictive value

of TMEscores in both the anti–MAGE-A3 (GSE35640; Supple-

mentary Fig. S7K-L) and anti–CTLA-4 (GSE63557; Supplemen-

tary Fig. S7M-N) immunotherapy cohorts. Patients with higher

TMEscores (TMEscores of patients treated with immunotherapy

summarized in Supplementary Table S14) were more likely to

benefit from immune-checkpoint therapy (IMvigor210 cohort:

Kruskal−Wallis, P = 9.2 × 10-12
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Figure 4.

TME characteristics of TCGA-STAD subtype and cancer somatic genome. A, Kaplan–Meier curves for high (n¼ 86) and low (n¼ 281) TMEscore groups of the

TCGA-STAD cohort. Log-rank test shows an overall P¼ 0.002. B, TMEscore differences in the TCGA-STADmolecular subtypes. CIN (n¼ 122); EBV (n¼ 23); GS

(n¼ 47); and MSI (n¼ 47). The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range).

The whiskers encompass 1.5 times the interquartile range. The statistical difference of four groups was compared through the Kruskal–Wallis test. P values are

indicated. C, Violin plot showing TMEscores in groups with high (n¼ 67) or low (n¼ 56) microsatellite instability (MSI) and stable (n¼ 251) statuses. The

differences between every two groups were compared through the Kruskal–Wallis test. P values indicated. D, Scatter plots depicting the positive correlation

between TMEscore andmutation load in the TCGA-STAD cohort. The Spearman correlation between TMEscore andmutation load is shown (P < 2.2� 10�16). The

dotted color indicates the TCGAmolecular subtypes (CIN: red; EBV: green; GS: blue; MSI: purple). E, The oncoPrint was constructed by those with low TMEscores

on the left (red) and those with high TMEscores on the right (blue). Individual patients represented in each column. Single-nucleotide variants: green; InDel

(insertion or deletion): orange; frameshift: blue. The top bar plot indicates TMB, TMEscore, and overall survival (OS) per patient, whereas the right bar plot

shows the mutation frequency of each gene in separate TMEscore groups. TMEscore, TCGAmolecular subtypes, histology, gender, and OS status are shown

as patient annotations.

Cellular Landscape of Gastric Cancer TME and Relevant Signatures

www.aacrjournals.org Cancer Immunol Res; 7(5) May 2019 745

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rim

m
u
n
o
lre

s
/a

rtic
le

-p
d
f/7

/5
/7

3
7
/2

3
4
3
6
7
5
/7

3
7
.p

d
f b

y
 g

u
e

s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2



Figure 5.

TMEscore is a prognostic biomarker and predicts immunotherapeutic benefit. A, Subgroup analyses estimating clinical prognostic value between low/high

TMEscore groups in independent gastric cancer data sets and cancer stage. The length of the horizontal line represents the 95% confidence interval for each

group. The vertical dotted line represents the hazard ratio (HR) of all patients. The vertical solid line represents HR¼ 1. HR < 1.0 indicate that high TMEscore is a

favorable prognostic biomarker. Number of patients indicated. B, Subgroup analyses estimating prognostic value of TMEscore in different cancer types from

TCGA data sets. The length of horizontal line represents the 95% confidence interval for each group. The vertical dotted line represents the HR of all patients. The

vertical solid line represents HR¼ 1. HR < 1.0 indicates that high TMEscore is a favorable prognostic biomarker. Number of patients is indicated. C, Kaplan–Meier

curves for patients with high (n¼ 88) and low (n¼ 209) TMEscores in the IMvigor210 cohort. Log-rank test shows an overall P¼ 0.008. D, Rate of clinical

response (complete response [CR]/partial response [PR] and stable disease [SD]/progressive disease [PD]) to anti–PD-L1 immunotherapy in high or low

TMEscore groups in the IMvigor210 cohort (two-sided Fisher exact test, P < 0.001). Patients with high TMEscores: response (n¼ 33) and nonresponse (n¼ 55);

patients with low TMEscores: response (n¼ 35) and nonresponse (n¼ 175). E, Distribution of TMEscores in groupswith different anti–PD-L1 clinical response

statuses (CR: n¼ 25; PR: n¼ 43; SD: n¼ 63; PD: n¼ 167). The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th

percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The differences among groups were compared through the Kruskal–

Wallis test (Kruskal–Wallis, P¼ 0.004). P values are indicated. F, ROC curves measuring the predictive value of the TMEscore, TMB, and combination of

TMEscore and TMB in the IMvigor210 cohort (N¼ 298). The area under the ROC curve was 0.624, 0.623, and 0.700 for the TMEscore, TMB, and TMEscore

combined with TMB, respectively. Likelihood ratio test, P¼ 0.019, and 0.004, respectively. G, Kaplan–Meier curves for patients with high (n¼ 21) and low (n¼ 6)

TMEscores in the GSE78220 cohort. Log-rank test shows an overall P¼ 0.021. H, Rate of clinical response (CR/PR, SD/PD) to anti–PD-1 immunotherapy in high or

low TMEscore groups in the GSE78220 cohort. Patients with high TMEscores: response (n¼ 14) and nonresponse (n¼ 7). Patients with low TMEscores: response

(n¼ 0) and nonresponse (n¼ 6). Two-sided Fisher exact test, P¼ 0.006. I, TMEscores in groupswith different anti–PD-1 clinical response status (CR/PR: n¼ 14;

SD/PD: n¼ 13). The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers

encompass 1.5 times the interquartile range. The differences between groups were compared through theWilcoxon test (Wilcoxon, P¼ 0.031). J, The predictive

value of the TMEscore measured by ROC curves in the GSE78220 cohort (N¼ 27). The AUC is 0.731.
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two-sided Fisher exact test, P < 0.001; Fig. 5D; Kruskal–Wallis test,

P ¼ 0.0041; Fig. 5E; GSE78220 cohort: two-sided Fisher exact

test, P ¼ 0.006; Fig. 5H; Wilcoxon test, P ¼ 0.031; Fig. 5I). To

investigate the biological characteristics of the TMEscore as it

pertained to anti–PD-L1/PD-1 treatment, we observed that

TMEscore A was positively correlated with a signature of

cytotoxic CD8þ effector T cells (Spearman coefficient: R ¼

0.96, P < 2.2 � 10�16; Supplementary Fig. S7D), whereas TME-

score B was associated with the TGFb response signal signature

(F-TBRS; Spearman coefficient: R ¼ 0.91, P < 2.2 � 10�16;

Supplementary Fig. S7D), consistent with the results of gastric

cancer data sets.

TMB (nonsynonymous variants), which is significantly associ-

ated with efficacy of immunotherapy, was also evaluated with

ROC analysis (50) in the IMvigor210 cohort (61). However, we

did not observe a predictive advantage of TMB when compared

with the TMEscore (likelihood ratio test, P ¼ 0.974; Fig. 5F).

Combining TMB and TMEscore improved the predictive value

compared with that of TMB or TMEscore alone using the pROC

package (ref. 14; likelihood ratio test, combination versus TMB,

P¼ 0.004; combination versus TMEscore, P¼ 0.019; Fig. 5F). The

survival advantage of patients in the high TMEscore group, for

both high and low TMB groups, was higher than that in the low

TMEscore group (log-rank test, P ¼ 0.003; Supplementary

Fig. S7E). The ROC analyses of the GSE78220 and GSE35640

cohorts also demonstrated that the TMEscore was a predictive

biomarker to immunotherapeutic benefits (GSE78220:

AUC ¼ 0.731; Fig. 5J; GSE35640: AUC ¼ 0.689; Supplementary

Fig. S7L). We next sought to validate the predictive value of

TMEscores in a mouse model treated with CTLA-4 antibody

(accession number GSE63557, N ¼ 20). We obtained 82%

conversion rate of TME signature genes A but only a 6% conver-

sion rate of TME signature genes B (human gene symbols) from

mouse probes; thus, only the predictive value of TMEscore A was

estimated (Wilcoxon test, P < 0.001; Supplementary Fig. S7M;

AUC¼ 1.000; Supplementary Fig. S7N). Taken together, our data

strongly suggest that TME evaluation is associated with response

to different immunotherapy approaches, including anti–PD-1/

PD-L1/CTLA-4 immune-checkpoint inhibitors and MAGE-A3

antigen–based immunotherapy.

Discussion

The TME signature, a tool designed to evaluate the compre-

hensive TME, is a biomarker for predicting survival in gastric

cancer and for guiding more effective immunotherapy strategies.

Our findings indicated that assessment of the immune and

stromal statuses via the TME signature provided a predictor of

survival in patients with gastric cancer and several other cancers,

with data obtained from TCGA. Based on functional analysis of

TME-relevant genes, our observations suggested that the TME

signature genes in group B were enriched for genes involved in

extracellular matrix remodeling (DCN, TIMP2, FOXF2, and

MYH11), EMT (ACTA2, TGFB1L1, and SFRP1), and cell adhesion

and angiogenesis (PDGFRA, GREM1, and TMEM100), which are

considered T-cell suppressive (13, 43, 61, 67, 68). We also

observed enrichment for genes involved in response to viruses

(IFNG, TRIM22, CXCL10, CXCL9, and CD8A), response to IFNg
(HLA-DPB1, CCL4, CCL5, and IFNG), and T-cell activation

(TRBC1, IDO1, CD2, NLRP3, and CD8A) among TME signature

genes in group A.

Therapeutic antibodies that block the PD-1/PD-L1pathway can

induce robust and durable responses in patients with various

cancers (11, 12, 43), including advanced gastric cancer (69).

However, these responses occur only in a minority of patients,

and several studies have found that PD-1 expression, PD-L1

expression, MSI status, and mutation load are not efficient bio-

markers for predicting the benefits of immune-checkpoint block-

ade (15, 69, 70). The establishment of predictive biomarkers for

checkpoint immunotherapy is, therefore, of importance in max-

imizing the therapeutic benefit (12, 15, 43). Emerging data

support the idea that the TME plays a crucial role in checkpoint

inhibitor immunotherapy (12–14, 71). Here, we have elucidated

the comprehensive landscape of interactions between the clinical

characteristics of gastric cancer and infiltrating TME cells.With the

help of several computational algorithms, a methodology was

established to quantify the TME infiltration pattern—the TME

gene signature.

Integrated analysis revealed that the TMEscore is a prognostic

biomarker for gastric cancer and was significantly elevated in

patients with MSI and EBVmolecular subtypes (1, 22, 63), which

have been confirmed to bemore sensitive to immune-checkpoint

blockade (15, 72). In line with previous research, EBVþ tumors

had low mutation burden, but exhibited immune infiltra-

tion (15, 63), suggesting that our methodology to evaluate the

TME is a more predictive biomarker to further advance precision

immunotherapy of gastric cancer. We also observed that the

TMEscore showed a positive correlation with TMB and predicted

neoantigen load in the TCGA gastric cancer cohort. Our data

indicated that patients with EMT and GS subtypes exhibited the

lowest TMEscores, consistent with studies (13, 61, 73) empha-

sizing that stromal activation is the core mechanism of resistance

to checkpoint blockade. This resource may also help to facilitate

the development of precision immunotherapy and the combined

approach of both immunotherapy and inhibition of the EMT

signaling pathway.

By applying ROC curve analysis (50), we also demonstrated the

predictive value of the TMEscore for checkpoint blockade in four

separate cohorts of patients withmetastatic urothelial cancer (13)

treated with the anti–PD-L1 agent (atezolizumab), metastatic

melanoma treated with anti–PD-1 (pembrolizumab), advanced

melanoma treated with a MAGE-A3 blocker (45), and a mouse

model treated with anti–CTLA-4 immunotherapy (46). Consis-

tent with a previous study about an immune signature score (74),

we observed a significantly higher TMEscores in responders than

in nonresponders undergoing checkpoint blockade therapy.

However, the immune signature (IS score) of previous research

was trained and obtained from the transcriptome profile directly

and only enriched in immune-relevant pathways. We focused on

the TME-infiltrating patterns and accessed the subtype-relevant

gene signatures, including an IS (TMEscore A) and stromal acti-

vation signature (TMEscore B). These data offer mechanistic

insights into the responses to immune-checkpoint blockade,

suggesting that response to PD-L1 and PD-1 blockade is not only

related to enhanced cytolytic activity, antigen processing, and

IFNg pathway components (13, 75), but is also associated with

inhibition of fibroblast activation, angiogenesis, the EMT, and

TGFb pathway components (13, 61, 67, 68). This suggests that

estimation of the immune TME combined with the stromal TME

could potentially influence therapeutic resistance. Consistent

with these findings, previous studies involving preclinical models

of advanced cancer with activation of TGFb- and EMT-relevant
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pathways, as well as fibroblast proliferation, demonstrated the

inhibition of T cell–mediated tumor killing and a decrease in

T-cell trafficking into tumors (13, 61). In line with our findings,

some preclinical studies have indicated that antibody–ligand

traps (anti-CTLA4–TGFbRII and anti-PDL1–TGFbRII) exhibit a

superior therapeutic index compared with those of their parent

immune-checkpoint inhibitors, which are currently in clinical

use (73, 76).

The results of our study should be further validated in a

prospective cohort of patients receiving immunotherapy using

the NanoString nCounter gene-expression platform (NanoString

Technologies) to more fully define cutoff values to be used.

Second, given the major clinical importance of distinct tumor

regions, it is appropriate to evaluate immune infiltration system-

atically in the core of the tumor and at the invasive margin.

Because not all patients with high TMEscores have greater benefit

of immunotherapy, more clinical factors should be incorporated

to prediction models for improvement of accuracy. In the current

study, this comprehensive evaluation of the cellular, molecular,

and genetic factors associated with TME infiltration patterns has

yielded several insights that shed light on how tumors respond to

immunotherapies and may guide the development of novel drug

combination strategies.
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