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Rangelands cover about 50% of the earth’s land surface, are in remote areas and
have low population densities, all of which provide an ideal opportunity for
remote sensing applications from unmanned aircraft systems (UAS). In this
article, we describe a proven workflow for UAS-based remote sensing, and discuss
geometric errors of image mosaics and classification accuracies at different levels
of detail. We report on several UAS missions over rangelands in Idaho and New
Mexico, USA, where we acquired 6–8 cm resolution aerial photography and
concurrent field measurements. The geometric accuracies of the image mosaics
were in the 1–2 m range, and overall classification accuracies for vegetation maps
ranged from 78–92%. Despite current FAA regulations that restrict UAS
operations to distances within line-of-sight of the UAS, our results show that
UAS are a viable platform for obtaining very high-resolution remote sensing
products for applied vegetation mapping of rangelands.
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1. Introduction

Remote sensing plays an important role in rangeland monitoring and assessment,

because rangelands are vast, comprising approximately 50% of the world’s land

area (Lund 2007), are often difficult to access, and the cost of ground monitoring

can be high. Image sensors on satellite or aerial platforms collect earth

observation data, and various scales of imagery have been used for rangeland

applications to measure vegetation and soil parameters: satellite imagery at

various resolutions (Clark et al. 2001, Chopping et al. 2006, Laliberte et al. 2007),

videography (Phinn et al. 1996, Pickup et al. 2000), aerial photography (Yu et al.

2006, Stow et al. 2008) from piloted aircraft, and ground-based photography

(Booth et al. 2005).

Aerial photography from unmanned aircraft systems (UAS) can bridge the gap

between ground-based rangeland measurements and remotely sensed imagery from

piloted aerial and satellite platforms, both in terms of image scale and image

acquisition costs. UAS have several advantages over piloted aircraft: UAS can be

deployed quickly and repeatedly, for example to assess flooding after sudden
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rainfalls; there is no risk to an on-board pilot; they can be used to obtain very high-

resolution imagery at lower image acquisition costs than with piloted aircraft (Rango

et al. 2006). UAS also have the potential to be a cheaper platform for acquiring

imagery than piloted aircraft, although this is highly dependent on the number of

ground crew required by current Federal Aviation Administration (FAA)

regulations.

Fine resolution imagery plays an important role in rangeland assessments for the

classification of spatial patterns of vegetation and soil patches at multiple spatial

scales (Bestelmeyer et al. 2006). These fine-scale patterns cannot be resolved with

coarser resolution satellite imagery, but are important indicators of erosion risk,

wildlife habitat quality and rangeland degradation. Landscape metrics derived from

very high resolution imagery can be used in rangeland health assessments and

ecosystem models.

Because rangelands are usually located in relatively remote areas and have low

population densities, UAS are ideally suited for potentially flying long-duration

remote sensing missions over these areas. In general, civil aviation regulatory

agencies are more inclined to permit UAS flights, especially low-altitude flights, over

remote areas because of less air traffic and reduced danger to people and buildings on

the ground (Rango and Laliberte 2010).

Large UAS, such as Ikhana and Global Hawk, have been used or proposed

for use in remote sensing in wildfire missions by NASA (Ambrosia and Wegener

2009), while the use of small UAS (550 kg) for remote sensing purposes has

been less common. This is primarily related to the limited payload capability of

small UAS, although recent advances in the miniaturization of sensors, global

positioning system (GPS) and inertial measurement unit (IMU) (Patterson and

Brescia 2008, Nagai et al. 2009) show great promise for UAS as capable remote

sensing platforms. Small UAS remote sensing applications have included assessing

water stress in crops (Berni et al. 2009), crop monitoring (Hunt et al. 2010),

riparian forest mapping (Dunford et al. 2009), and specifically in rangelands,

estimation of shrub utilization (Quilter and Anderson 2001) and detection of

invasive species (Hardin et al. 2007).

At the US Department of Agriculture (USDA), Jornada Experimental Range

(JER) in New Mexico, researchers have been investigating the use of UAS for

applied rangeland remote sensing for several years (Rango et al. 2006, Laliberte and

Rango 2009, Laliberte et al. 2010). Efforts have focused on developing a workflow

for UAS-based aerial photo acquisition, image processing, production of orthomo-

saics and derivation of classification maps. While many of the image processing steps

have their origins in traditional aerial image processing and analysis, some aspects

are unique to UAS-acquired imagery, specifically the use of low-cost digital cameras,

small image footprints and low accuracy GPS/IMU data. This has resulted in the

need to adapt existing approaches or develop new approaches for image processing

of UAS-derived imagery.

The objectives of this article are to report on the results of several UAS remote

sensing missions, and describe a proven workflow for UAS-based rangeland remote

sensing. We will focus specifically on the photogrammetric processing of the images,

the geometric accuracies of the orthomosaics and the classification accuracies

obtained at different levels of detail. We also address the regulatory issues associated

with UAS operations, and discuss the future potential of UAS-based remote sensing

for rangeland applications.
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2. Methods

2.1 UAS and sensors

The small UAS used in our missions was a BAT 3 UAS manufactured by MLB Co.

(Mountain View, CA) (Figure 1). The BAT has a 1.8 m wingspan, weighs 10 kg, and

has an endurance of 2–6 h. The system is catapult launched from the top of a vehicle,

and can be landed manually or autonomously. The GPS-based navigation is based

on preprogrammed waypoints, which can be changed and uploaded to the aircraft in

real time. The system is equipped with a return-to-home mode if the 900 MHz link

or GPS is lost. The UAS can be controlled manually via a 72 MHz link.

The BAT carries two sensors: a colour video camera with optical zoom capability

in-flight and live video downlink, and a Canon SD 900 ten megapixel digital camera

used for image acquisition for subsequent production of classification maps. Imagery

is acquired from an altitude of 214 m above ground. Based on the camera’s sensor

size of 3072 6 2304 pixels, and a field of view of 53.18, the image footprint measures

213 m 6 160 m, with a nominal ground resolved distance of 6 cm. Images are

acquired at 75% forward lap and 40% side lap to ensure sufficient overlap for

photogrammetric processing. The images are stored on the camera’s 16 gigabyte

memory card, and for each image, a timestamp, GPS location, elevation, roll, pitch

and heading are recorded by the flight computer. The GPS module (TIM-LP

Antaris1) has an update rate of 4 Hz, and the accuracy is 2.5 m. The accuracy of the

attitude data from the IMU is rated as +28 for roll and pitch, and +58 for heading.

2.2 Location of missions and regulatory issues

Remote sensing missions have been flown over southern New Mexico since 2006 and

over southwestern Idaho in 2008 (Figure 2). The New Mexico site is the home base

for the UAS operations at the JER, a 78,000 ha field experiment station of the

USDA Agricultural Research Service. The western portion of the JER is situated in

the National Airspace System (NAS), while the eastern portion adjacent to White

Figure 1. BAT 3 UAS ready to be launched from the catapult. One person holds the launch
cord, the second person is on stand-by for manual control, the third person serves as visual
observer and performs radio communications.
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Sands Missile Range is in restricted airspace. The FAA is charged with regulating

UAS operations in the NAS. Those regulations require a Certificate of Authoriza-

tion (COA) from the FAA (FAA 2010). At the JER, the BAT is operated in the NAS

under a COA issued to the New Mexico State University Unmanned Aircraft

Systems Flight Test Center, formed through a partnership between the FAA and

New Mexico State University. Our flight data are shared with New Mexico State

University and FAA to assist with development of standards and regulations for

UAS operators. In the restricted airspace, UAS flights are conducted with

permission of White Sands Missile Range. In Idaho, flights were conducted under

a COA issued to USDA.

Our COA regulations limit flights to 800 m (½ mile) horizontal distance and

300 m (1000 ft) vertical distance to the visual observers. The UAS team consists of a

minimum of a pilot in command, internal pilot (ground station operator), external

pilot (radio control pilot) and three visual observers. All personnel have a FAA class

II medical certificate, the pilots have completed private pilot ground school and the

pilot in command has a private pilot’s license. Additional personnel include payload

and catapult support.

Due to the COA limitations, our flight areas are limited to a length of 1.6 km,

while width varies (commonly 0.8–1.6 km). If larger areas have to be covered,

multiple flights are conducted, or external pilots and visual observers are moved

while keeping the UAS in a line-of-sight holding pattern. In Idaho, three flight areas

Figure 2. Locations of UAS missions for rangeland remote sensing projects. The overview
map (a) shows the locations in Idaho and New Mexico, USA. Flight areas are depicted in
white outlines for the 2008 flights in Idaho (b), and for flights conducted at the Jornada
Experimental Range (JER) in NewMexico from 2006 to 2010 (c). The black outline represents
the JER. The white line in (c) is the boundary between restricted airspace east of the line, and
the NAS west of the line.
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were covered in 2008, while in New Mexico, 62 flight areas have been flown since

2006. Overall, we have acquired more than 14,500 images, processed into 65 image

mosaics with an average of 234 images per mosaic. In this article, we are reporting on

the accuracies of vegetation classifications of image mosaics for two areas in Idaho

(65 ha and 83 ha) and two in New Mexico (5 ha, 10 ha), and on geometric accuracy

assessments for one Idaho site (116 ha) and one New Mexico site (173 ha).

2.3 Image processing

2.3.1 Orthorectification and mosaicking

The orthorectification of the imagery was performed using a combination of a

customized procedure termed PreSync, followed by orthorectification using Leica

Photogrammetry Suite (LPS1) (Erdas 2010). The flowchart (Figure 3) outlines the

process. The exterior orientation data, consisting of position (X,Y,Z), and attitude

(roll, pitch, heading) data from the BAT’s flight computer are not sufficiently

accurate to use directly in LPS due to the relatively low-cost GPS and IMU units,

and camera/flight data synchronization error of approximately 1 s. PreSync is

designed to improve the accuracy of the exterior orientation data, so that

orthorectification can be performed in LPS. The approach also minimizes or

eliminates the use of manually input ground control points, which are difficult to

locate in areas with few distinguishing features and on large numbers of small-

footprint images. Inputs to the PreSync procedure include the UAS images of the

flight area, initial tie points, initial exterior orientation, a 1 m resolution digital

orthoquad (DOQ), a 10 m digital elevation model (DEM) and the camera’s interior

Figure 3. Flowchart of UAS image processing for adjustment of exterior orientation (EO)
parameters with the PreSync procedure, and subsequent orthorectification and mosaicking
with LPS.
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orientation parameters (radial lens distortion, principal point offset, focal length)

derived from a camera calibration (Fryer 1996). The initial tie points are derived

using Autopano Pro1 (Kolor 2009), a program that extracts image tie points

automatically without requiring initial exterior orientation data or image-to-flight

line matching.

The PreSync workflow consists of combining the reference image (DOQ), the

DEM, the exterior and interior orientation parameters, and tie points into a sensor/

environment model, and simulating image acquisition. Simulated imaging projects

points from the image plane onto the DEM to locate tie points and to extract a patch

of the reference image. Each tie point is evaluated by the variance of its location on

multiple images. The reference image patch is transformed to match the sensor array

and is evaluated by computing the covariance with the actual sensor image. The

exterior orientation is repeatedly adjusted by various means, and is scored based on

the tie points and the image covariance. After several iterations, the best scoring

value is recorded as the corrected exterior orientation for the image, and used as

input to LPS for orthorectification. The main steps of PreSync are (1) initial tie point

alignment, (2) rigid block adjustment, (3) individual image adjustment and (4)

realignment of tie points. We briefly describe the four steps, but additional detail

about the PreSync procedure can be found in Laliberte et al. (2008).

In the initial tie point alignment, a mean ground coordinate is assigned to each tie

point derived from Autopano Pro, and the exterior orientation of each image is

adjusted to minimize the root mean square error (RMSE) of the image’s tie points.

The next step is a rigid block adjustment of the entire block of images with the goal

of maximizing the average covariance of the block. The third step, individual

adjustment of each image’s exterior orientation value, uses the gradient following

search method to maximize image covariance. This reduces relatively large tip-tilt

variability between images and lets each image seek its preferred orientation within

the local space. The final step is the realignment of tie points while maintaining the

tip-tilt corrections from the prior step. If further alignment is required, the rigid

block adjustment, and if required, the individual image adjustment, are repeated.

The running times for PreSync currently average 2 min per image. The improved

exterior orientation values and tie points with ground coordinates are used as input

to orthorectification in LPS. Additional automatic tie point generation in LPS is

optional to improve the aerotriangulation results.

After orthorectification, we produce an initial image mosaic, which is resampled

using the 1 m DOQ as a reference image in the AutoSync module in the Erdas1

software (Erdas 2010). This step improves the alignment of the mosaic with existing

imagery with little additional time involved, because the tie point collection in

AutoSync is automated.

We assessed the positional accuracies of two image mosaics, one in New Mexico

for a relative flat site of 173 ha with elevation differences of 14 m (257 UAS images),

and the other in Idaho for a topographically more diverse site of 116 ha with

elevation differences of 113 m (156 images). For the New Mexico mosaic, we

determined RMSEs between image coordinates and coordinates of 72 independent

check points (points with a known location) of visible features collected with a

Trimble Pro XR1 differential GPS unit. For the Idaho mosaic, we obtained

coordinates for 591 random points from a 15 cm resolution orthoimage acquired

with an UltraCam X digital mapping camera from a piloted aircraft 1 week prior to

the UAS flights.
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2.3.2 Image classification

Developing classification maps from the UAS imagery presents certain challenges

compared to using imagery from higher quality mapping cameras. Although the

spatial resolution is very high, the spectral and radiometric resolutions obtained

from the low-cost consumer camera are relatively low, and the red (R), green (G) and

blue (B) bands are highly correlated. A transformation from the RGB space to the

intensity-hue-saturation (IHS) space results in reduced band inter-correlation and

three additional bands of image information. In the IHS model, the intensity

component is separated from the colour information, and the hue and saturation

bands relate to how humans perceive colour (Jensen 2005). The use of IHS has been

shown to increase classification accuracies with UAS-acquired RGB imagery

(Laliberte and Rango 2008), and we routinely use this transformation approach as

a pre-processing step.

For the image classification, we used an object-based image analysis (OBIA)

approach and the software eCognition1 8 (Definiens 2009). OBIA has seen

increasing use over the last 8 years due to the ever increasing resolution of high-

resolution satellite imagery, the prevalence of digital aerial imagery, and the bridging

of remote sensing and geographic information system (GIS) functionality (Blaschke

2010). The advantages of an OBIA approach versus a pixel-based image analysis

approach are greater suitability for very high resolution imagery, the ability to

include spectral, spatial and contextual features, and the extraction of ecologically

meaningful image objects (Burnett and Blaschke 2003). The general OBIA workflow

consists of image segmentation followed by classification of image objects, although

in many cases an iterative process is used whereby classification is followed by

further segmentation at finer or coarser levels, additional classifications of the image

or portions of the image, and merging of objects and/or classes. All the rule sets and

algorithms applied to the image are contained in a process tree, which can be saved

and easily adapted to other images. This allows for automation or semi-automation

of the image analysis workflow.

For the UAS image classifications, the OBIA workflow was adapted to the size of

the area due to the limitations on the number of image objects that can be created in

eCognition. The limit is between two and five million objects, depending on number

of bands, bit depth and complexity of image objects. A typical UAS mosaic with an

extent of 1.6 km 6 1 km has a file size of two gigabytes, and the maximum number

of objects can be exceeded quickly with fine-scale segmentation. Aside from the

object number limitation, it is often easier to develop a rule set on a small portion of

the image and apply it to additional image subsets than to classify the entire image.

With this approach, classification errors are easier to determine, edits are less time

consuming and variations in the vegetation communities can be addressed.

For the 5 ha area in New Mexico, the number of objects was not a limitation,

and a process tree was developed and applied to the entire image mosaic. For the

10 ha area in New Mexico, which consisted of 18 0.49 ha plots, we developed a

process tree on the first plot and applied it to the remaining plots using the

workspace feature in eCognition. This allowed for rapid application of the same

process tree to multiple individual images in the same work project. A combination

of rule-based classification for broader classes and nearest neighbour classification

for finer (species-level) classes was used. For the rule-based classification, specific

rules were used to define thresholds for the three classes shadow, bare ground and
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vegetation. For more detailed classifications at the species-level, field-collected

training samples were used for a nearest neighbour classification.

The two areas in Idaho were much larger (65 ha, 83 ha), and we developed the

process tree on a 0.25 ha plot surveyed on the ground and classified the image to the

structure group level (two bare classes, shrub, grass/forb, shadow) (Laliberte et al.

2010). Each of the image mosaics was segmented into tiles, and each tile was

segmented at the desired fine scale of analysis and classified using the process tree

from the small plot. Rule-based classification was used in these images. Either

method, applying the process tree to multiple small images, or tiling a large image

and processing each tile in sequence, allows for classifying relatively large UAS

image mosaics of sub-decimetre resolution in a semi-automated fashion.

Classification accuracies were assessed by creating error matrices and calculating

overall, user’s, and producer’s classification accuracies, and Kappa statistics

(Congalton and Green 2009). For the species-level classifications at the New Mexico

sites, the accuracy samples (n ¼ 762 and n ¼ 523) for the seven classes consisted of

image objects, and the accuracy assessments were conducted in eCognition. For the

larger sites in Idaho, we used a stratified random point sampling approach with 600

points for five classes, and the accuracy assessment was done in Erdas.

3. Results

3.1 Geometric accuracies

Our tests of the geometric accuracies resulted in an RMSE of 0.65 m for the New

Mexico image mosaic in the relatively flat area, and an RMSE of 1.14 m for the

Idaho image in the area with greater elevation differences (Figure 4). Taking into

account the GPS errors for the New Mexico image (84% of the GPS points were in

the 30–50 cm range), the approximate geometric accuracy was 1 m. The 15 cm

orthoimage used as a reference image for the Idaho site had an accuracy of 80 cm.

With this added uncertainty, the accuracy of the Idaho image was approximately

2 m. We acknowledge that the source data for geometric assessment differed, and

that neither the differential GPS data nor the coordinates from the orthoimage

represent ‘true ground’ coordinates. Nevertheless, the error assessments offered a

reasonable comparison with commonly used reference data, and demonstrated that

geometric accuracies can be expected to be lower in areas of greater terrain variation.

The AutoSync step in the image processing workflow (Figure 3) improved the

geometric accuracy from an RMSE of 1.64 for the initial mosaic output to an RMSE

of 0.65 for the New Mexico image, indicating that the AutoSync adjustment offers a

relatively quick and effective means of improving the geometric accuracy of the UAS

mosaics.

3.2 Classification approaches

The classification at the 10 ha New Mexico site was done to the species level using

training samples and a nearest neighbour classification. Because the process tree was

developed on one plot and applied to subsequent areas of the image, not only the

rule base but also the signatures for the training samples were transferred. Even

though most species occurred in all plots, some had significantly fewer shrubs than

others. Nevertheless, results indicated that the rules and signatures of the process

transferred well to other plots. Some edits were required for selected image objects in
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each plot, mostly for the litter and black grama classes, which were easily confused.

Editing required 5–10 min per plot. We were able to differentiate two shrub species

(mesquite, yucca), one sub-shrub (snakeweed) and two grass species (black grama,

dropseed) in addition to bare ground, litter, and shadow (Figure 5).

Figure 4. Geometric accuracies for two UAS mosaics acquired over an area in New Mexico
with 14 m elevation difference (a), and over an area in Idaho with 113 m elevation difference
(b). The points show differences in the X and Y direction assessed by (a) comparison with
check points measured with differentially corrected GPS, and by (b) comparison with
coordinates from a 15 cm resolution orthoimage acquired with an UltraCam X digital
mapping camera.
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For the larger Idaho sites, a classification at the structure group level (bare

ground, shrubs, grass/forb) was performed. Details of the results are shown in Figure

6. Clipping of the UAS mosaic eliminated areas at the image edges which have more

distortions. A segmentation into tiles (chessboard segmentation) was the framework

for application of the process tree developed on a small subset of the image with

representative vegetation (Figure 6(a)). A close-up view of four tiles demonstrates

the workflow and results (Figure 6(b)): the upper left tile has been segmented and

Figure 5. Portion of UAS image mosaic acquired over rangelands in New Mexico (left) and
species-level classification (right). The area shown covers 70 m 6 70 m.

Figure 6. Classification of UAS image mosaic acquired in Idaho and object-based image
analysis workflow using a tiling process. (a) Image mosaic created from 156 images covering
116 ha; the red rectangle represents the 0.25 ha plot where the process tree for the classification
was developed. The blue grid represents the segmentation into tiles. (b) Detailed view of the
four upper left tiles in (a); the left upper tile has been classified, the right upper tile has been
segmented. (c) Final classification. The scale for (c) is identical to (a).
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classified, the right upper tile has been segmented to the scale at which the

classification will be performed. After that tile has been classified, the next tile is

segmented, and so on. The entire classification took 10 h to complete (Figure 6(c)).

Visual assessment indicated that the classification rules in the process tree were

applicable to the entire image. In contrast to the New Mexico image, no editing was

done in the Idaho image due to the larger area and much greater number of

segments.

3.3 Classification accuracies

The overall classification accuracies obtained with the UAS images are relatively

high (78–92%), considering that the images are true colour photography obtained

with a low-cost digital camera. The differences in the accuracy results reflect the

different objectives for development of classification maps, the extent of areas

mapped and the methods of accuracy assessments (Table 1). For the New Mexico

sites, the objective was to map relatively small areas at the species level, while for

Table 1. Classification accuracies obtained for object-based classifications of UAS image
mosaics acquired over arid rangelands at two sites in Idaho and two sites in New Mexico.

Site and classes
Producer’s

accuracy (%)
User’s

accuracy (%)
Number of
samplesa

Overall
accuracy (%)

Kappa
index

Idaho site 1, 65 ha Total 600 88 0.82
Shadow 70 91 30
Bare bright 82 100 22
Bare dark 98 88 326
Grass/Forb 78 79 79
Shrubs 80 96 143

Idaho site 2, 83 ha Total 600 83 0.73
Shadow 85 95 22
Bare bright 87 100 31
Bare dark 85 91 354
Grass/Forb 83 62 70
Shrubs 80 75 123

NM site 1, 10 ha Total 762 78 0.64
Bare 78 75 70
Litter 76 95 115
Mesquite 99 81 165
Yucca 48 56 109
Snakeweed 46 82 113
Black grama 84 31 94
Dropseed 87 25 96

NM site 2, 5 ha Total 523 92 0.90
Bare bright 94 99 77
Bare dark 98 96 93
Mesquite 99 95 83
Snakeweed 85 96 44
Burrograss 97 95 82
Tobosa dense 83 75 77
Tobosa sparse 90 91 67

aFor the two Idaho sites, the samples consisted of points, while for the two New Mexico sites, the samples
consisted of image segments.
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the Idaho sites, structure groups were mapped over relatively larger areas. We also

used two different methods of accuracy assessment. The training and accuracy

samples in the New Mexico sites were based on image segments. In the Idaho sites,

no training samples were used because classification was rule-based, and the

accuracy samples were based on points due to the much larger image extent. For

those reasons, direct comparisons of accuracies between all sites should not be

attempted.

The two Idaho sites can be compared, because the same classes were mapped

over areas of similar size, and both accuracy assessments consisted of 600 point

samples. While shrubs and bare ground had high accuracies in both sites, it was

apparent that the grass/forb class presented a greater challenge, resulting in lower

accuracies. This can be related to the time of image acquisition. In September, this

area of Idaho is relatively dry, and grasses contain more senescent than green

vegetation, resulting in confusion between grasses and shrubs and grasses and the

bare dark class.

Although the two New Mexico sites shared some of the same species, the

sites differed in terms of vegetation complexity and desired mapping objective. Site 2

(the 5 ha site) had spectrally more unique classes as well as a greater density of

training and test samples. This site had a much higher accuracy for snakeweed, and

considering that the bare class was split into bare bright and bare dark, the

accuracies were relatively high compared to the bare class in New Mexico site 1

(the 10 ha site). Another reason for the lower accuracy at site 1 was the inclusion of

the litter class. A specific mapping objective at site 1 was to determine the

separability between litter and other classes. As it turned out, litter was confused

with black grama grass, with some snakeweed plants that contained a mixture of

green and senescent plant material, and with dropseed, a bunchgrass that occurs in

very small patches. We did observe that at both New Mexico sites, mesquite had

comparable producers and users accuracies, very likely attributable to the fact that

mesquite is a relatively large shrub and less likely confused with other classes. Some

of the differences between users and producers accuracies for a given species at New

Mexico site 1 likely reflect the limit of separability between species and litter that can

be obtained with this type of imagery.

4. Discussion and conclusions

In this article, we have described a workflow for UAS-based rangeland remote

sensing, and reported on accuracy assessments of resulting orthomosaics and

classification maps. Approaches used in the processing of imagery from piloted aerial

photography missions can be applied, although the methods require adaptations to

the unique challenges that are often associated with UAS-acquired imagery: low

accuracy telemetry data for some UAS with low-cost GPS units, use of consumer

digital cameras and potentially large image mosaic files. The low accuracy of the

exterior orientation data obtained with small UAS usually preclude either direct

geoferencing used with higher accuracy imagery (Jacobsen 2002), or immediate input

into commercial photogrammetry software. This has led many to develop custom

applications for processing of UAS imagery (Du et al. 2008, Wilkinson et al. 2009,

Zhou 2009). Our approach is unique, because the PreSync module is aimed at

improving the exterior orientation values, and we take advantage of existing

software for tie point detection and final orthorectification. The PreSync workflow
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has been tested to date on 65 image mosaics of arid rangelands with few

distinguishing features. Considering the resolution difference between the UAS

images and the 1 m DOQ images used for matching, the process has performed well,

even though the DOQs have been up to 4 years older than the UAS images. This

time difference has not affected the processing of images from relatively slowly

changing rangelands. In areas of greater change over time, such as hayfields, we have

observed some difficulties in image matching.

Because our approach does not require much operator interaction, an

orthorectified image mosaic of 250 images can be obtained approximately 2 days

after the flight. The geometric accuracies of the image mosaics are suitable for

routine rangeland monitoring purposes, and allow for relating image information to

ground-based vegetation measurements.

While the low radiometric and spectral resolution of low-cost digital cameras has

its limits in terms of classification products, we have shown that by using a

conversion to the IHS space and OBIA, we can produce structure-level or species-

level thematic maps for rangeland assessment at relatively high accuracies. We have

shown in a related study that a plot-based remote sensing analysis of UAS images for

percent cover values was more efficient than a ground-based measurement approach

when more than eight plots were analysed (Laliberte et al. 2010). The segmentation

of a mosaic into smaller, manageable tiles that are subsequently processed with an

identical rule-base, offers an approach to classify large image files that would

otherwise exceed the maximum number of segments in the OBIA approach. While

we executed the tiling within an eCognition project using a chessboard segmentation,

the Enterprise version of the software can manage tiling and stitching on a server,

thus greatly increasing the processing ability.

The classification accuracies we obtained were highly dependent on the level of

detail, number of classes, size of area and specific mapping objectives, not unlike any

other mapping project. However, the results are promising and certainly show that a

UAS equipped with a low-cost digital camera can serve as a viable remote sensing

platform for rangeland assessment. While certain classes, such as litter, may be

difficult to distinguish given the camera used, structure level mapping is certainly

possible at relatively high accuracies. Remotely sensed estimates of non-vegetated

areas, shrub and grass cover are tied to soil and site stability, watershed function,

and biotic integrity, all rangeland attributes commonly monitored with ground-

based methods (Herrick et al. 2005). Using a UAS to obtain estimates of land cover

parameters at the landscape scale allows us to then focus on specific areas that

require ground measurements at a greater level of detail.

FAA rules for operating a UAS in the NAS currently have limitations for large-

area rangeland assessments with UAS (Rango and Laliberte 2010). The ability to fly

autonomously at relatively large distances from base operations is one of the

advantageous of UAS and could potentially be exploited by public land management

agencies to monitor vast and remote rangelands. However, current regulations (FAA

2008) limit UAS flights to within line-of-sight, requiring the use of visual observers

or chase aircraft. In April 2009, the small UAS aviation rulemaking committee

(ARC) submitted their recommendations to the FAA. Due to their low cost and

operating expenses, and suitability for remote sensing, small UAS are predicted to

have the fastest growth of any UAS. It is anticipated that small UAS will be

regulated separately from large UAS in the future, hopefully allowing for broader

use in natural resource applications.
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Our ongoing research is focused on investigating new sensors and novel image

analysis approaches for UAS-acquired imagery. Aside from evaluating classification

accuracies and refining methods for processing and analysing large image files, UAS

imagery acquired at the JER is currently being used to adapt field sampling to very

high resolution imagery, derive parameters for a deterministic hydrologic model,

support repetitive data analysis for a phenology pilot study, assist in evaluation of

disturbance experiments and contribute high resolution information for archae-

ological studies.

We are currently integrating into the UAS a multispectral camera that acquires

10-bit radiometric data in six narrow bands ranging from blue to near infrared.

This imagery will support radiometric correction and will allow for better species

differentiation. In addition, we are developing methods to fuse the optical data

with dense surface models generated from the UAS images for derivation of

vegetation heights. Plans for testing of additional sensors are underway. We

encourage the FAA to develop UAS regulations that will allow for applying image

processing and analysis methods developed on smaller areas to the landscape scale,

so that UAS-based remote sensing can be further integrated into rangeland

assessments.
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