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Abstract: Intra-field heterogeneity of soil properties, such as soil organic carbon (SOC), nitrogen
(N), phosphorous (P), exchangeable cations, pH, or soil texture, is a function of complex interactions
between biological factors, physical factors, and historic agricultural management. Mapping the crop
growth and final yield heterogeneity and quantifying their link with soil properties can contribute to
an optimization of amendment/fertilizer application and crop yield in a management variable zones
(MVZ) approach. To this end, we studied a field of 17 ha consisting of four former fields that were
merged in early 2017 and cropped with winter wheat in 2018. Historical management practices data
were collected. The topsoil characteristics were analyzed by grid-based sampling and kriged to create
maps. We tested the capacity of a multispectral MicaSense® RedEdge-MTM camera sensor embedded
on an unmanned aerial vehicle (UAV) to map in-season growth of winter wheat. Relating several
vegetation indices (VIs) to the plant area index (PAI) measured in the field highlighted the red-edge
NDVI (RENDVI) as the most suitable to follow the crop growth throughout the growing season.
The georeferenced final grain yield of the winter wheat was measured by a combine harvester. The
spatial patterns in RENDVI at three phenological stages were mapped and analyzed together with
the yield map. For each of these images a conditional inference forest (CI-forest) algorithm was used
to identify the soil properties significantly influencing these spatial patterns. Historical management
practices of the four former fields have induced significant heterogeneity in soil properties and crop
growth. The spatial patterns of RENDVI are rather constant over time and their Spearman rank
correlation with yield is similar along the growing season (r ' 0.7). Soil properties explain between
87% (mid-March) to 78% (mid-May) of the variance in RENDVI throughout the growing season, as
well as 66% of the variance in yield. The pH and exchangeable K are the most significant factors
explaining from 15 to 26% of the variance in crop growth. The methodology proposed in this paper
to quantify the importance of soil parameters based on the CI-forest algorithm can contribute to a
better management of amendment/fertilizer inputs by stressing the most important parameters to
take into consideration for site-specific management. We also showed that heterogeneity induced by
the soil properties can be described by a crop map early in the season and that this crop map can be
used to optimize soil sampling and thus amendment/fertilizer management.
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1. Introduction

According to the Food and Agriculture Organization (FAO), the demand for cereals
will increase by 70% by 2050 due to an ever-growing population [1]. Currently, croplands
under conventional management receive broadcasted applications of fertilizers, herbicides,
irrigation, seeds, etc. [2], while it has been shown that soil properties and crop conditions
can vary considerably over space and time within a single field [3]. In order to secure food
supplies for future generations, expected amounts and quality of agricultural products,
intensive but environmentally safe production, and sustainability of the resources involved
are required. To meet these ends, precision agriculture emerged as a way to apply the
right treatment type and amount in the right place at the right time [4]. Gebbers and
Adamchuk [4] defined precision agriculture as “ [agriculture that] comprises a set of tech-
nologies that combine sensors, information systems, enhanced machinery, and informed
management to optimize production by accounting for [spatial and temporal] variability
and uncertainties within agricultural systems”. Hence, when precision agriculture is ap-
plied to a field, it is potentially divided into various management zones that each receive
customized inputs, based on landscape position and soil conditions [2].

Spatial distribution of crop growth and yield within a territory are classically expected
to result, besides crop management, from basic factors such as soil characteristics, position
in the landscape (field topography and soil exposure), and weather conditions. Under-
standing the degree of importance of the effects of these main drivers on crop growth and
yield is essential in order to assess the potentialities and usefulness of applying variable
rate inputs, mainly amendments (organic or calcic) and fertilizers, within a field [5]. The
most relevant properties of soil productivity are soil moisture content, clay content, organic
matter content, nutrient availability, pH, and bulk density [4]. However, spatial variations
in crop yield reflect not only the influence of soil properties, site characteristics, and weather
conditions, but also their complex interactions. Therefore, seasonal variation in crop growth
conditions such as water stress or excess, lack or excess in nutrients, and disease, pest, and
weed pressures and incidences can also greatly affect inter- and intra-annual variations in
crop performance [6]. The intra-field heterogeneity of soil properties is thereby a function of
complex interactions between biological, physical, and chemical factors as well as historical
management practices.

Remote sensing in agriculture allows non-contact measurements of spectral radiation
reflected from crop canopy or bare soil, and has been used since the early 1970s (for an
exhaustive list of studies see [2]). With the development of remote sensing technology
leading to increasing spatial, temporal, and spectral resolution, the relevance of using
reflectance data from remote platforms has increased [2]. These technological advances
in remote sensing imagery coupled with a decrease in associated costs have allowed the
collection of timely information on crop variability. Such information on agricultural crop
status during the growing season can be used for estimating potential crop yields. Moreover,
an early assessment of the risk of yield reduction acquired by timely crop monitoring could
help to guide the strategic planning related to site-specific management of crop inputs, such
as amendments or fertilizers. Remote sensing is frequently used to estimate spatial patterns
in crop growth through the use of spectral vegetation indices (VIs), such as the commonly
used Normalized Difference Vegetation Index (NDVI). However, the latter suffers from
limitations when it comes to estimating the total plant biomass in fully developed crops,
and the use of other spectral indexes, such as those including the red-edge bands (centered
around 740 nm), is recommended [7].

Recently, unmanned aerial vehicles (UAV) have been developed as low-cost observa-
tional platforms for environmental monitoring with an ever-increasing scientific interest [8].
The latest advancements in sensor specifications (weight, spectral and radiometric reso-
lutions, battery autonomy) have allowed an exponential increase of UAV applications in
agriculture, as they can be easily deployed to monitor the crop during the growing season
over a field or some contiguous fields.
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Numerous studies have described crop growth monitoring through the use of such
technologies combining remote sensing and UAVs. Lukas et al. [9] showed that Green
NDVI (GNDVI) is a reliable variable to estimate winter wheat biomass across the growing
season. Schirrmann et al. [10] showed that RGB UAV imagery is sufficient to assess winter
wheat crop biophysical variables such as leaf area index (LAI) along the growing season
and that there is significant variation in pattern between different dates. Barley biomass
estimation can be made by combining RGB height estimation and VI. While only VI is
suitable at early development stages, the combination with RGB height is more robust at
advanced stages [11].

This paper aims to explore the links between the within-field spatial variations in crop
growth throughout the growing season and the spatial variability of site characteristics,
current soil properties (physical and chemical), and contrasted historical soil and crop
management practices. We use a case study of a winter wheat crop in 2018 (sowing in
autumn 2017) in a single loamy field of central Belgium (Gembloux). Crop growth assess-
ment was based on relevant VIs derived from in-season UAV remote sensing imagery and
yield mapping sensor at harvest. Information on the current within-field spatial patterns
of soil characteristics, such as soil organic carbon (SOC), nitrogen (N), phosphorus (P),
exchangeable cations, pH, or physical soil texture characteristics, were collected. The
objectives of the present study were (i) to test a selection of UAV-based VIs and choose the
best one to accurately monitor and map in-season winter wheat crop growth heterogeneity
as well as the related final grain yield; (ii) to assess, using a conditional inference forest
(CI-forest) algorithm, the link between, on the one hand, the winter wheat crop growth and
yield, and on the other hand, field soil properties, characteristics, and former field layout
linked to contrasted historical soil and crop management practices within four previous
different parcels merged into a unique field; (iii) to explore and discuss the possibilities of
UAV remote sensing acquisition on a winter wheat canopy growth and yield to indirectly
qualify and/or quantify the within-field spatial patterns of soil properties and character-
istics, and to define potential field management variable zones. Such final information
could contribute, for instance, either to an improvement in the optimization of further
amendments, manures or fertilizer recommendation aiming to mitigate soil heterogeneity
effect on crop, or to better contribute to in-season management of fertilizer application
through site-specific management of the crop.

2. Materials and Methods
2.1. Study Site

The study was conducted in 2018 on an experimental conventional farming field
(50◦33′55.0′ ′N, 4◦43′02.2′ ′E) in the vicinity of Gembloux, central Belgium. The field is
located in the loam belt region dominated by niveo-eolian deposits characterized by well-
drained soils. The climate is temperate oceanic with mean annual precipitation of 790 mm
and with the lowest monthly mean temperature in January (2.3 ◦C) and the highest monthly
mean temperature in July (17.8 ◦C). The field of 17 ha consists of four former parcels,
characterized by contrasted historical soil and crop management practices, that were
merged in spring 2017. The entire field was sown with a winter wheat crop in October 2017
(Figure 1). The study area was defined within this field by applying an inner buffer of five
meters to avoid the border effects in the analysis of the UAV images, manually deleting the
headlands, and keeping only the area covered by the three UAV images captured during
the 2018 winter wheat crop growing season (cf. Section 2.3).
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Figure 1. RGB image of the study site (Bing Aerial®). Dashed lines delineate the former field layout 
(parcels A, B, C, and D) before merging in spring 2017 to make up the 17 ha field. The black contin-
uous line delineates the study area, defined by applying an inner buffer of 5 m, deleting the head-
lands and keeping only the common area between the three unmanned aerial vehicle (UAV) images 
captured during the 2018 winter wheat growing season. Dots indicate locations of soil samples and 
triangles indicate locations of plant area index (PAI) measurements (May 2018). 

A calendar of annual field management practices for the four parcels of the former 
field layout dating back to 1990 was established. The data collected concerned main crop, 
organic and mineral amendments and fertilizers, cover crops, and residues, all of which 
affect the soil organic and mineral content. P, K, Mg, and Ca fertilizer/amendment con-
tents (obtained from laboratory analysis or internal references for organic or calcic ferti-
lizer/amendment) were used to calculate/estimate the rates applied. An estimation of the 
exportation of P, K, and Mg at harvest was carried out using yield, crop type, and P–K–
Mg exportation (kg per yield unit) [12]. Daily meteorological data from the Belgian Royal 
Meteorological Institute (RMI) weather station (Gembloux-Ernage) located within 3 km 
from the field were retrieved from March to July 2018. Temperature and precipitation data 
were used to assess the growing conditions. 

2.2. Soil Data 
A total of 80 soil samples (0–25 cm depth) were collected in August 2018 according 

to a systematic sampling design on the nodes of a 50 m grid. Each sample consisted of 10 
subsamples taken within a radius of 2.5 m with a 3 cm diameter core drill. Sample posi-
tions were recorded using a John Deere Starfire 3000 Real Time Kinematic (RTK) GPS in-
strument (Moline, IL, USA) with 2.5 cm precision. The samples were dried (<40 °C) and 
gently crushed and passed through a 2 mm sieve, according to NF ISO 11464 standard, 
and analyzed for soil organic carbon (SOC), total nitrogen (N), P, Fe, Ca, exchangeable 
cations (K, Mg, Mn), pH, and soil texture (Table 1). To assess the importance of the former 
field layout on the variability of soil properties, a one-factor analysis of variance 
(ANOVA) test was applied for each soil variable, using the former field layout as the cat-
egorical factor of interest. This test was followed by a Student–Newman–Keuls (SNK) test 

Figure 1. RGB image of the study site (Bing Aerial®). Dashed lines delineate the former field layout
(parcels A, B, C, and D) before merging in spring 2017 to make up the 17 ha field. The black continuous
line delineates the study area, defined by applying an inner buffer of 5 m, deleting the headlands and
keeping only the common area between the three unmanned aerial vehicle (UAV) images captured
during the 2018 winter wheat growing season. Dots indicate locations of soil samples and triangles
indicate locations of plant area index (PAI) measurements (May 2018).

A calendar of annual field management practices for the four parcels of the former
field layout dating back to 1990 was established. The data collected concerned main
crop, organic and mineral amendments and fertilizers, cover crops, and residues, all of
which affect the soil organic and mineral content. P, K, Mg, and Ca fertilizer/amendment
contents (obtained from laboratory analysis or internal references for organic or calcic
fertilizer/amendment) were used to calculate/estimate the rates applied. An estimation
of the exportation of P, K, and Mg at harvest was carried out using yield, crop type, and
P–K–Mg exportation (kg per yield unit) [12]. Daily meteorological data from the Belgian
Royal Meteorological Institute (RMI) weather station (Gembloux-Ernage) located within
3 km from the field were retrieved from March to July 2018. Temperature and precipitation
data were used to assess the growing conditions.

2.2. Soil Data

A total of 80 soil samples (0–25 cm depth) were collected in August 2018 according
to a systematic sampling design on the nodes of a 50 m grid. Each sample consisted of
10 subsamples taken within a radius of 2.5 m with a 3 cm diameter core drill. Sample
positions were recorded using a John Deere Starfire 3000 Real Time Kinematic (RTK) GPS
instrument (Moline, IL, USA) with 2.5 cm precision. The samples were dried (<40 ◦C) and
gently crushed and passed through a 2 mm sieve, according to NF ISO 11464 standard, and
analyzed for soil organic carbon (SOC), total nitrogen (N), P, Fe, Ca, exchangeable cations
(K, Mg, Mn), pH, and soil texture (Table 1). To assess the importance of the former field
layout on the variability of soil properties, a one-factor analysis of variance (ANOVA) test
was applied for each soil variable, using the former field layout as the categorical factor of
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interest. This test was followed by a Student–Newman–Keuls (SNK) test (alpha value of
0.05) to identify, for each variable, the significantly different former field(s).

Table 1. Soil properties monitored and methodology used for the samples analysis.

Soil Property(ies) Methodology Reference

P
Extraction using ammonium acetate and

ethylenediaminetetraacetic acid and analysis by
injection flow colorimetry.

[13]

K, Mg, Ca, Fe, Mn, Na
Extraction using ammonium acetate and

ethylenediaminetetraacetic acid and dosage by and
analysis by flame atomic absorption spectrometry.

[13]

pH
Glass electrode in a suspension of soil diluted 1:5

(volume fraction) in a 1 mol·L−1 potassium
chloride solution.

NF ISO 10390

SOC Dry combustion (DUMAS). Derived from NF ISO 10694

N Dry combustion (DUMAS). Derived from NF ISO 13878

Texture

Sedimentation and sieving to determine the
percentage of clay (particle size < 2µm), silt

(particle size between 2 and 50 µm), and sand
(particle size > 50 µm).

Derived from NF X 31–107

Additionally to the soil properties analysis, a digital elevation model (DEM) at 1 m
spatial resolution was downloaded from the Walloon Geoportal, an online geodatabase
of the Walloon region. The DEM was generated from aerial light detection and ranging
(LiDAR) images acquired between December 2012 and March 2014. The average point
density of the scanner is less than 1 point/m2, and the altimetric resolution is ca. 0.12 m
over the entire Walloon territory (source: http://geoportail.wallonie.be/catalogue/6029e7
38-f828-438b-b10a-85e67f77af92.html; accessed on 10 March 2022).

2.3. Crop Data

Crop growth was assessed based on the plant area index (PAI) derived from ground-
truth digital hemispherical photography (DHP) and VIs derived from UAV multispectral
imagery. UAV images and DHP were acquired at three dates during winter wheat growing
season: 26 March 2018 (BBCH phenological stage 28, end of tillering), 17 April 2018 (BBCH
30, beginning of stem elongation), and 16 May 2018 (BBCH 37, end of stem elongation).

DHP technique uses a digital camera with a fisheye lens to measure canopy gap
fraction over a wide range of viewing directions [14]. This technique is widely used and
allows retrieving LAI with an uncertainty of less than 1 [15]. A BESEL Super fish-eye
lens 0.25× was mounted on a CANON Powershot A540 (Tokyo, Japan) camera set on a
1200 × 1600 pixel per image resolution. Photographs were taken in a downward-pointing
direction at about 1.5 m distance from the ground on a regular basis by following the tractor
tracks (north–west–west orientation). Each point corresponds to the central position of a
series of ten pictures spaced one step apart (Figure 1) and was geolocated with a Spectra
Promark 120 L1 RTK GPS. CAN-EYE software [16] was used to process the DHP pictures
and to derive one PAI value per series. PAI is very similar to LAI for winter wheat.

A RedEdge-MTM sensor from MicaSense® (Washington, DC, USA) was used to acquire
UAV multispectral images of the crop. It allows capturing images in five narrow spectral
bands, each from a dedicated sensor, in the range 475–840 nm (Table 2). Images are provided
with a resolution of 1280 × 960 pixels, from a sensor with a horizontal field of view (HFOV)
of 47.2 degrees. The image acquisition rate was fixed at 1 image/second. Sensor sensitivity
and exposure time were set to automatic for each picture. The camera was integrated with
a downwelling light sensor, provided by MicaSense®, to register solar irradiance for each
picture and allow for radiance correction in post-processing.

http://geoportail.wallonie.be/catalogue/6029e738-f828-438b-b10a-85e67f77af92.html
http://geoportail.wallonie.be/catalogue/6029e738-f828-438b-b10a-85e67f77af92.html
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Table 2. Specifications of the RedEdge-MTM sensor from MicaSense®.

Spectral Band Center Wavelength (nm) Bandwidth (nm)

Blue (B) 475 20
Green (G) 560 20

Red (R) 668 10
Red edge (RE) 717 10
Near-IR (NIR) 840 40

For data acquisition, the RedEdge-MTM was embedded on a quadcopter-type UAV
(a DJI Phantom 3 and a custom-made model with DJI N3 controller). UAV surveys were
executed with flight planning software (DJI Ground Station Pro; Shenzhen, China) to keep
a regular flight elevation of 45 m a.g.l., a regular inter-line distance to provide a lateral
overlap of the images of 80%, and a flight speed of 6 m s−1 to provide a frontal overlap of
80%. Pictures of a calibrated reflectance target were acquired at the beginning of each flight
to allow for conversion of radiance data to reflectance.

The images were then processed with the photogrammetric software Pix4d Mapper
(Lausanne, Switzerland) to produce reflectance maps with a resolution of 3.9 cm/pixel.
This software automatically dealt with all of the phases of image correction (black-level
compensation, vignetting correction, radiometric calibration), orthomosaic generation, and
data conversion from radiance to reflectance.

In addition, the grain yield was measured during the harvest on 17 July 2018 using a
force plate sensor (impulsion measurement) embedded on the combine harvester. The yield
sensor from John Deere was placed in front of the hopper and measured the grain flow
(number of grains per second). The grain flow value was then converted into yield. The
average harvesting width was 7.1 m and the system recorded data every 1.3 m. Geolocation
was recorded with a John Deere Starfire 3000 RTK GPS. The data were supplied already
interpolated at 1 m resolution by ordinary kriging (OK).

2.4. Data Analysis
2.4.1. Vegetation Indices

Aiming at characterizing the heterogeneity of the crop growth at the three UAV images
acquisition dates, four VIs were computed using the spectral data provided by the RedEdge-
MTM sensor (Table 2). All VIs were calculated in the form of a generic normalized difference
index (NDI) combining the near-infrared (NIR) band with the red (R), green (G), and red-
edge (RE) bands, except for the NDI668-717, which combines the R and RE bands (Table 3).
The VI with the highest capacity to characterize crop growth heterogeneity was selected,
taking into account (i) the capacity to avoid saturation, to which some VIs are sensitive [17],
and (ii) the goodness of fit of its relationship to PAI, which is used as ground-truth data.
A simple linear regression was carried out on PAI and the VI values extracted within a
1 m buffer area of the corresponding locations. An additional manually created mask was
applied to erase the tractor tracks.

Table 3. Vegetation indices (VIs) computed using spectral data from the RedEdge-MTM camera
spectral sensor embedded on a quadcopter-type UAV (a DJI Phantom 3 and a custom-made model
with DJI N3 controller).

Vegetation Index Abbreviation Formula Reference

Normalized Difference Vegetation Index NDVI NIR − R/NIR + R [18]
Green NDVI GNDVI NIR − G/NIR + G [19]

Red-Edge NDVI RENDVI NIR − RE/NIR + RE [20]
Normalized Difference Index NDI668-717 RE − R/RE + R [7]
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2.4.2. Compilation of Uniform Maps

In order to provide uniform information into the final model and to reduce compu-
tation time of the operation, all the geolocated data available were transformed to fit a
reference grid of 10 m resolution. This resolution was considered as adequate to correlate
crop patterns with soil properties determined from samples spaced 50 m apart. Addi-
tionally, even with this resampling resolution, UAV-based crop images are still useful
because the reflectance of aggregated pixels is more accurate than 10 m resolution satellite
images, where a single pixel still has, to some extent, the influence of the reflectance of the
neighboring pixels, while the aggregation of fine-resolution pixels minimizes uncertainty
due to georeferencing.

The VI, yield, and DEM rasters were aggregated and resampled by means of the
bilinear interpolation technique to fit the 10 m resolution reference grid. This method
assigns the output cell value by taking the weighted average of four closest cell centers. The
previous parcel layout (the only categorical variable) was rasterized to the reference grid.

The soil physicochemical properties were interpolated according to the reference grid
using OK. Within the variety of interpolation methods for soil parameters, OK was proven
to be performant for application in crop-site-specific management [21,22]. It takes into
consideration both the distance and the degree of variation among known points when
calculating the unknown points and it estimates a value at a point of a region for which a
variogram has been fitted [23]. Grid sampling method is preferred to random sampling
for this kind of purpose [24], and a good knowledge of spatial dependence of the soil
variables considered is important as a strong dependence makes it easier for site-specific
management [25]. The basic parameters required for OK prediction are supplied by a
variogram 2γ(x,y). It is a function describing the spatial dependence of a random field,
and it is defined as the expected square increment of the values between locations x and
y [23]. The variograms were fitted using the fit.variogram function in R v3.6.1 (R Core Team,
Vienna, Austria) gstat v1.1-6 package, for all soil variables. The fitted spherical variogram
models were subsequently used in the OK krige function in R gstat v1.1-6 package, and the
selected soil variables were interpolated according to the 10 m resolution reference grid.
The sill-to-nugget ratio was calculated to evaluate the quality of the semivariograms, and a
leave-one-out cross-validation procedure was conducted to compute a relative root mean
square error of cross validation (rRMSECV; i.e., RMSECV divided by the mean) to assess
the quality of the interpolation.

Overall, the final dataset contains rasters of VI at three dates (26 March 2018, 17 April 2018,
and 16 May 2018), yields, DEM, former field layout, and soil physicochemical properties at
10 m resolution.

2.4.3. Conditional Inference Forest

A CI-forest algorithm was used to identify, amongst the DEM, former field layout, and
soil properties variables, the key drivers of crop growth at the four development stages (in
March, April, and May for crop vegetation growth and in July at harvest for yield). The CI
forest algorithm is a tree ensemble machine learning procedure similar to a random forest
(RF). It combines the growth of multiple CI-trees to produce a more stable and accurate
regression compared to a single CI-tree, by eliminating the possibility of overfitting the
original data (i.e., the fitted model corresponds too closely to a particular dataset and might
therefore fail to fit additional data) [26]. Moreover, it is capable of modeling nonlinear
interactions between response and predictor variables without any pre-assumptions about
the distribution of the data [27,28]. The advantage of using CI-forest, compared to the
traditional RF, is the decision to split a node, which is based upon the outcome of a test of the
global null hypothesis of independence between the response and the predictor variables
selected for splitting a node. If the null hypothesis is rejected at specified significance level,
the node is split, otherwise, the tree growth is completed [29].

A total of 500 CI-trees were grown using the CI-forest algorithm (cforest() in the R
v3.6.1 (R Core Team, Vienna, Austria) “party” package v1.3-3). The predictor variables used
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to construct the models included soil properties, information on the former field layout,
and the digital elevation model (DEM). Empirical results suggest that the importance
of correlated predictor variables is severely overestimated [30]. Therefore, when highly
correlated predictors occur (Pearson’s rank correlation coefficient ρ > 0.7), the variable with
lower rRMSECV, i.e., higher quality of interpolation, was selected so as to include a more
accurate kriged map in the CI-forest model.

The number of splitting variables was set to half the square root of the total number of
predictor variables. The criterion for partitioning was set at 0.95, i.e., the null hypothesis
to split a node is to be rejected at the significance level α = 0.05. For each CI-forest model,
the relative variable importance (RVI) was extracted. Variables were deemed important if
their relative importance was greater than that expected from a theoretical model, where
all predictors are equally influential [29]. The performance of the model was evaluated
using the coefficient of determination (R2) and the RMSE.

3. Results
3.1. Historical Soil and Crop Management and 2018 Meteorological Conditions

Soil and crop management practices data for the period 1990–2018 across the parcels
of the former field layout were retrieved from CRA-W archives and compiled to create
a summary of the field management practices (Tables 4 and 5). The four parcels were
managed in a conventional farming system throughout the period 1990–2018. The val-
ues of Tables 4 and 5 are presented for four sub-periods from 1990 to 2018 to allow the
illustration of the contrasted historical soil and crop management practices and also the
consideration of short- to long-term effects of such practices on current soil properties. For
each sub-period, values are expressed as the sum of annual values over the sub-period.
The crops were grown in rotation. The main crops are the main ones for central Belgium,
i.e., winter wheat (Triticum aestivum sp.), winter barley (Hordeum vulgare sp.), sugar beet
(Beta vulgaris subsp. vulgaris Altissima Group sp.), maize (Zea mays sp.), potato (Solanum
tuberosum sp.), and oilseed rape (Brassica napus sp.).

The soil was ploughed and harrowed every year and usual crop protection products
(fungicides, herbicides, insecticides) were used. Recommended N–P–K fertilization was
applied according to the balance sheet method for N and the triennial balance between im-
port and crop uptakes for P and K, applying various mineral or organic forms of fertilizers
and amendments (organic or calcic).

SOC can be affected by the crop residue restitution, organic amendments (farmyard
manure, slurry, waste lime), and winter cover crops (Table 4) [31]. Before 2009, mustard
was occasionally sown as a winter cover crop. The last ten years, winter cover crops (ray-
grass or mixture) were sown systematically if possible prior to a summer crop. Since 1990,
there have been no remarkable differences between parcels for cover crops. Long-term
observation of crop residues shows a higher occurrence on parcel D. Looking at least at
the last ten years or more, more organic inputs were applied on plots B and D, which is
expected to have increased their SOC content over the period.

Organic amendments also contain various amounts of minerals such as P, K, Mg, and
Ca, also supplied by mineral fertilizers and amendments such as KCl, solid P–K in various
proportions, Haspargit (K2O, CaO, SO3), or dolomite (CaCO3 and MgCO3).

For the 2014–2018 period, the balance between import and export of P, K, and Mg
was negative, especially on parcel A (Table 5). For 2010–2018, the balance is positive for
parcel B, close to zero for parcel D, and still negative for parcel A and C. This differentiation
between the A–C and B–D parcels remains for the 2000–2018 period, especially for P and K.
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Table 4. Summary of historical soil and crop management practices data related to organic matter resti-
tution or application in each of the four parcels (A, B, C, and D) of the former field layout (see Figure 1).
Annual data are summed for four periods (2014–2018, 2010–2018, 2000–2018, 1990–2018). # = Number
of occurrences. Residues = crop residues restitution.

Period Parcel Winter Cover Crop Residues Farmyard Manure Slurry Waste Lime

# Type(s) # # t·ha−1 # m3·ha−1 # t·ha−1

2014–2018 A 2 mixture 0 0 0 0 0 0 0
B 1 mixture 3 0 0 0 0 0 0
C 2 mixture 2 0 0 0 0 0 0
D 2 mixture 1 0 0 1 40 0 0

2010–2018 A 3 raygrass,
mixture 3 0 0 1 30 0 0

B 2 raygrass,
mixture 4 2 70 2 60 0 0

C 2 mixture 2 0 0 0 0 0 0
D 3 mixture 2 2 70 1 40 0 0

2000–2018 A 5
mustard,
raygrass,
mixture

7 2 75 1 30 2 37

B 3
mustard,
raygrass,
mixture

7 5 165 2 60 1 15

C 3 mustard,
mixture 8 1 35 0 0 1 15

D 4 mustard,
mixture 10 5 170 1 40 1 15

1990–2018 A 5
mustard,
raygrass,
mixture

10 3 100 1 30 3 59

B 4
mustard,
raygrass,
mixture

11 7 220 2 60 2 40

C 4 mustard,
mixture 11 3 85 0 0 3 75

D 4 mustard,
mixture 15 7 270 1 40 1 15

Table 5. Summary of historical P, K, Mg, and Ca nutrient import and export in each of the four
parcels (A, B, C, and D) of the former field layout (see Figure 1). Annual data are summed for four
periods (2014–2018, 2010–2018, 2000–2018, 1990–2018). Organic imports (OI) refers to farmyard
manure, slurry, and waste lime, as stated in Table 4. Mineral imports (MI) refers to various mineral
amendments or fertilizers. Imports (Imp) is the sum of OI and MI. Exports (Exp) of P, K, and Mg are
based on crop-yield-based estimation uptake at harvest from COMIFER references tables [12]. Dif is
the difference between Exp and Imp.

Period Parcel P2O5 (kg·ha−1) K2O (kg·ha−1) MgO (kg·ha−1) CaO (kg·ha−1)
OI MI Imp Exp Dif OI MI Imp Exp Dif OI MI Imp Exp Dif OI MI Imp

2014–2018 A 0 120 120 465 −345 0 250 250 1128 −878 0 0 0 176 −176 0 150 150
B 0 30 30 263 −233 0 30 30 403 −373 0 0 0 75 −75 0 150 150
C 0 120 120 316 −196 0 250 250 748 −498 0 0 0 118 −118 0 0 0
D 72 30 102 337 −235 160 30 190 812 -622 40 0 40 134 −94 80 0 80

2010–2018 A 54 120 174 559 −385 120 250 370 1234 −864 30 0 30 181 −151 60 150 210
B 430 30 460 338 122 870 30 900 542 358 200 0 200 96 104 554 150 704
C 0 200 200 504 −304 0 530 530 1025 −495 0 0 0 164 −164 0 0 0
D 408 110 518 503 15 825 310 1135 1154 −19 180 0 180 196 −16 647 0 647

2000–2018 A 732 436 1168 1089 79 869 1490 2360 2264 96 458 0 458 376 82 1635 395 2030
B 1002 110 1112 788 324 1755 710 2465 1507 958 502 600 1102 251 851 1593 1055 2648
C 296 410 706 726 −20 345 1400 1745 1445 300 182 0 182 228 −46 667 180 847
D 1003 190 1193 912 281 1755 990 2745 1924 821 492 0 492 322 170 1717 160 1877

1990–2018 A 1045 436 1481 1710 −229 1138 1490 2628 3763 −1135 672 0 672 599 73 2450 395 2845
B 1480 140 1620 1400 220 2300 1760 4060 3298 762 800 600 1400 464 936 2684 1055 3739
C 1066 410 1476 1217 259 915 2600 3515 2518 997 732 0 732 410 322 2777 180 2957
D 1463 190 1653 1446 207 2655 990 3645 3129 516 692 0 692 540 152 2337 160 2497

Ca was supplied by organic amendment (especially waste lime), Haspargit, and
dolomite, which are used to lime the parcel. Waste lime was applied until 2009. Haspargit
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was occasionally applied in the last 20 years on each parcel and the most recent application
dates back to 2014 on parcels A and B. A total of 1500 kg·ha−1 of dolomite (55% CaCO3,
40% MgCO3) was applied on plot B in 2009. According to the 2010–2018 period, a higher
pH can be expected on parcels B and D.

The four parcels were merged in spring 2017 into a unique field of 17 ha. Maize was
then sown over the whole field with a N–P–K supply (21%–6%–6%) of 500 kg·ha−1 as bulk
fertilizer and harvested in October. Winter wheat was sown on 27 October 2017 for the
2018 growing season. Only mineral N was supplied, with an application of 71.5 uN·ha−1

(sulfazote) in March and 60 uN·ha−1 (solid) in May (Figure 2).
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According to the “Bulletins Agrométéorologiques” for the year 2018 [32], growing
conditions were favorable for winter wheat at the end of winter and beginning of spring.
May, June, and July were unusually dry and hot, which led to serious drought problems
for summer crops.

The drought has not really impacted yields of the winter wheat up to June, but has
accelerated the grain ripening, leading to early harvest in July. The crop growth observed
by drone in May (Figure 2) was thus a priori not affected by these dry conditions, as hydric
stress was not yet induced. Appropriate application of plant protection products avoided
the emergence and damages due to pest and disease. Nevertheless, the dry conditions
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after the application of the solid N in May could have led to a non-optimal absorption and
valorization by the crop.

3.2. Soil Property Assessment across the Entire Field and the Previous Four Parcels

The values of physical and chemical soil parameters are given in Table 6. Globally, the
ranges of value are close to the normal values encountered in this part of the Belgian silty
(silt rate around 70–75%) region essentially dedicated to main crops. It must, however, be
mentioned that the pH values of the studied field range from 7 to 8 and therefore the soil is
qualified as basic. The coefficients of variation (CV) vary globally from 3% up to 42% for
the soil properties across the entire field. P and Na show the highest intra-field variation,
while Ntot, pH, and silt content the lowest. Distribution frequency for each soil property
can be found in the Appendix A (Figure A1).

Table 6. Averaged, minimum, and maximal values of soil properties over the whole experimental
field of 17 ha. The last column shows the conventional significance code of p-value (p-V SC) of an
analysis of variance (ANOVA) test for four groups of soil samples partitioned based on their location
within the four parcels (A, B, C, and D) of the former field layout (see Figure 1). CV = coefficient of
variation. Significance code : *** = 0 to 0.001 p-value; ** = 0.001 to 0.01; * = 0.01 to 0.05; . = 0.05 to 0.1.

Variable Unit Min Max Mean SD CV (%) p-V SC

Clay % 12.4 22.3 18 2.4 13 .
Ca mg/100 g 223.7 803 339.3 84.7 25 *
Fe mg/kg 241.7 593 346.7 83.4 24 ***
K mg/100 g 13.9 34.7 21.7 3.6 17 ***

Mg mg/100 g 5 14.7 9.2 1.8 19 **
Mn mg/kg 187.7 317.6 231.2 33 14 **
Na mg/100 g 0.4 4.2 1.9 0.8 42 .

Ntot % 0.1 0.1 0.1 0.01 7 .
P mg/100 g 7.2 25.5 12.3 3.8 31 *

pH / 6.9 7.9 7.6 0.3 3 ***
Sand % 5.4 11.4 6.7 0.8 12
Silt % 71.2 80 75.4 2 3 .

SOC g/kg 8.3 15 10.3 1.3 13 ***

The results of the ANOVA tests aiming to compare the specific values within the four
parcels of the former field layout reveal very highly significant differences for pH, SOC,
K, and Fe values, while highly significant differences are observed for Mg and Mn, and
significant differences for P and Ca. More specifically, the SNK tests reveal significantly
higher pH and K values for B–D parcels compared to A–C parcels. SOC is significantly
higher on the B parcel and Fe on the D parcel, as is also the case for Mn and Mg, respectively.
For Ca and P, only A and B parcels show significantly higher value. To illustrate the results
of the SNK test, the mean values and distributions of each soil variable in each of the four
previous parcels can be found in the Appendix A (Figure A2).

Looking back a decade ago (period 2010–2018) and with respect to historical manage-
ment practices data summary (Table 5), the highest pH and K values in parcels B and D
can be explained, respectively, according to the higher balance value (difference between
imports and exports) in Ca and K applications than in parcels A and C. Additionally for the
period 1990–2018, applications of much higher amounts of waste lime (a calcic amendment)
on parcels B and D (Table 4) partly explain their current higher pH values. Similarly, higher
SOC values on parcel B and D are in agreement with the two to three times higher applied
amounts of farmyard manure for the period 1990–2018 (Table 4), such applications leading
to an expected higher biological activity in parcels B and D.

As aforementioned, the CI-forest algorithm is sensitive to correlated predictors. Hence,
amongst the highly correlated predictors (Pearson’s rank correlation coefficient ρ > 0.7)
(Figure 3), we selected those with a lower rRMSECV (Table 7), as those provided a more
accurate kriged map. Overall, silt was eliminated because of its high negative correlation
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with clay (ρ = −0.94), sand because of its high positive correlation with P (ρ = 0.70), and Fe
because of its high positive correlation with Mn (ρ = 0.80). Moreover, Na was eliminated
because of its very high rRMSECV (0.41%), resulting in a kriged map of poor quality. This is
probably caused by the inaccuracy of Na laboratory analysis, well known by the reference
laboratory of the Requasud network in Belgium.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 26 
 

 

higher on the B parcel and Fe on the D parcel, as is also the case for Mn and Mg, respec-
tively. For Ca and P, only A and B parcels show significantly higher value. To illustrate 
the results of the SNK test, the mean values and distributions of each soil variable in each 
of the four previous parcels can be found in the Appendix A (Figure A2). 

Looking back a decade ago (period 2010–2018) and with respect to historical man-
agement practices data summary (Table 5), the highest pH and K values in parcels B and 
D can be explained, respectively, according to the higher balance value (difference be-
tween imports and exports) in Ca and K applications than in parcels A and C. Addition-
ally for the period 1990–2018, applications of much higher amounts of waste lime (a calcic 
amendment) on parcels B and D (Table 4) partly explain their current higher pH values. 
Similarly, higher SOC values on parcel B and D are in agreement with the two to three 
times higher applied amounts of farmyard manure for the period 1990–2018 (Table 4), 
such applications leading to an expected higher biological activity in parcels B and D. 

As aforementioned, the CI-forest algorithm is sensitive to correlated predictors. 
Hence, amongst the highly correlated predictors (Pearson’s rank correlation coefficient ρ 
> 0.7) (Figure 3), we selected those with a lower rRMSECV (Table 7), as those provided a 
more accurate kriged map. Overall, silt was eliminated because of its high negative corre-
lation with clay (ρ = −0.94), sand because of its high positive correlation with P (ρ = 0.70), 
and Fe because of its high positive correlation with Mn (ρ = 0.80). Moreover, Na was elim-
inated because of its very high rRMSECV (0.41%), resulting in a kriged map of poor qual-
ity. This is probably caused by the inaccuracy of Na laboratory analysis, well known by 
the reference laboratory of the Requasud network in Belgium. 

 
Figure 3. Pearson correlation matrix of the soil parameters from the 80 topsoil samples collected on 
the study field in August 2018. 

Figure 3. Pearson correlation matrix of the soil parameters from the 80 topsoil samples collected on
the study field in August 2018.

Table 7. Ordinary kriging parameters for the soil variables selected as input for the fi-
nal conditional inference forest (CI-forest) algorithm. RMSECV = RMSE of cross validation,
rRMSCVE = relative RMSECV.

Variable Nugget Sill Range (m) Nugget/Sill RMSECV rRMSECV

P 0.99 13.38 134.77 0.07 2.95 0.24
K 3.99 9.89 237.24 0.4 2.84 0.13

Mg 1.1 2.27 160.19 0.48 1.52 0.17
Ca 2161.69 6816.59 367.59 0.32 65.4 0.19

pH (KCl) 0.4 0.57 4531.11 0.7 0.19 0.02
Mn 0 1191.92 124.91 0 25 0.11
SOC 0.77 18.61 7525.21 0.04 1.06 0.1
Ntot 0 0 92.99 0.51 0.01 0.07
clay 0 5.99 121.89 0 1.85 0.1

The maps generated by OK (parameters can be found in Table 7) are presented
in Figure 4. The interpolated map of SOC shows, for example, areas with higher SOC
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content in (i) the foot slope (parcel D) and in (ii) the northeastern area of the field (parcel B).
These two parcels used to form one independent parcel until 2017.
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Figure 4. Maps of interpolated soil variables by ordinary kriging and DEM map. Points represent
the location of the topsoil sampling, and gray lines show the delineation of the previous four parcels
(A, B, C, and D) of the former field layout which were merged in 2017 (see Figure 1). The black border
delineates the study area which is used as input in the CI-forest algorithm.

3.3. Crop Growth Assessment
3.3.1. VI Selection

NDVI and NDI668-717 level off in April and May, and their values seem to no longer
reflect the crop growth and development of winter wheat (Figures 5 and 6). Among the
four VIs, RENDVI shows the smallest saturation effect in May. The linear regression of VI
to PAI resulted in an R2 and an RMSE of, respectively, 0.92 and 0.72 for GNDVI, 0.92 and 0.7
for RENDVI, 0.87 and 0.91 for NDVI, and 0.77 and 1.2 for NDI668-717 (Figure 6). It should
be noted that we used the VIs derived from the UAV sensor as a proxy for the crop growth
in order to map its heterogeneity within the field. For such a proxy assessment against
ground-truth PAI data, we assumed that a simple linear regression was sufficient and more
straightforward than, for example, partial least square or RF regressions. Based on the
goodness of fit of the regressions and the evolution of the VIs throughout the growing
season (Figure 5), RENDVI was chosen as the best remotely sensed proxy for crop growth.
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Figure 6. VI values derived from spectral information acquired by MicaSense® RedEdge-MTM

sensor mounted on quadcopter UAV plotted against ground-truth measurements of PAI derived
from ground-truth digital hemispherical photography (DHP) during the 2018 winter wheat growing
season (end March, mid-April, mid-May) over the studied field. NDI (668-717) = NDI668-717.

3.3.2. RENDVI and Final Yield Maps

RENDVI and yield maps present similar patterns throughout the growing season
(Figure 7). The effects of the former field layout on the crop growth appear, with the
northeastern (B) and southeastern (D) parcels showing higher biomass and yields.
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Figure 7. RENDVI acquired by MicaSense® RedEdge-MTM sensor embedded on a quadcopter UAV
and winter wheat grain yield (measured during the harvest on 17 July 2018 with a John Deere sensor)
maps showing the crop growth heterogeneity and its continuity all along the considered growing
period from March to July 2018. The gray lines illustrate the delineation of the previous four parcels
A, B, C, and D (after suppression of headlands), which were merged into a unique field in spring
2017 (see Figure 1).

The Spearman rank correlation coefficient (Sp), calculated for all combinations of
RENDVI acquisition dates and yield (pixel scale), confirms the stability of the patterns in
vegetation and yield throughout time. Sp is larger than 0.8 amongst RENDVI values at
the three acquisition dates and larger than 0.7 between yield and RENDVI values at each
acquisition date.

Additionally, RENDVI and yield maps are displayed, classified into five groups
of the same number of pixels, defined by four quantiles (Figure 8). This allowed to
highlight the time-continuity of intra-field heterogeneity along the growing season and at
harvest. Moreover, this highlights more clearly the separation of the field into two main
zones, defined quite well by the grouping of the A and C versus the B and D previous
parcels, as it was defined by the analysis of historical management practices and soil
samples. Nevertheless, these maps also show heterogeneity within each of the previous
four parcels, which could be interesting to take into account in a field management variable
zones approach.
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3.4. Assessment of the Contribution of Soil Property Heterogeneity to In-Season Crop Growth and
Final Yield Heterogeneity Using the CI-Forest Algorithm

The CI-forest models for the entire field performed very well at fitting: they explained
variance of 66–87% (Figure 9).

The crop growth was best predicted by the CI-forest model at the beginning of the
growing season. By the end of March, the model explained 87% of the observed variance.
Model performances decreased over time, from 87% to 66%.

K and pH were identified as the most important and stable explanatory variables
for crop growth throughout the entire growing season, explaining from 15% up to 26%
of the variance in crop growth and yield each. The former field layout (OB variable) was
amongst the top ranked for the crop growth throughout the growing season and for the
yield, except for mid-May where SOC and DEM emerged as more important splitting
variables for the prediction of crop growth. In contrast, Mn, Ca, clay, P, and Ntot were not
important splitting variables either for crop growth or yield in any of the CI-forest models.
Mg was marginally important at the beginning of the season (end-March) and at harvest
(mid-July), but this instability might be attributed to the randomness of the model. These
soil parameters did not generate any heterogeneity in crop growth, meaning that they were
probably not the limiting growth factors.
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Figure 9. Relative variable importance (RVI) of predictor variables (variable importance of a given
variable normalized to the sum of variable importance of all variables in the model) influential to crop
growth and yields at four dates, during the growing season of winter wheat crop in 2018 over the
study area (see Figure 1), calculated by CI-forest algorithm after the removal of correlated variables.
The vertical dashed line indicates the expected importance in a completely random model. The
performance of the models was evaluated using the R2 and the RMSE throughout the growing season
and the harvest. * Expressed in kg ha−1. OB stands for old borders, of the former field layout into
four parcels.

Given the importance of the former field layout in all CI-forest models, we carried out
the same CI-forest analysis for each of the four former parcels. The results are reported in
the Appendix A (Figure A3). Overall, the model performance decreased for each parcel
compared to the results from the entire field, with the highest R2 = 0.82 obtained for Parcel
B in April, and the lowest R2 = 0.28 obtained for parcel A in July. The interpretation of
the results must be performed with care as the models have, in some cases, very poor
explanatory ability. The variable importance rankings for RENDVI and yield vary strongly
amongst parcels. While in the CI-forest analysis for the whole field pH was the most
discriminatory variable, this is only the case for parcel C in May. On the other hand, the
second most discriminatory variable for the entire field, K, is top-ranked in parcels A and B
during crop growth stages. This highlights once more the impact of the heritage of former
field division and of historical soil and crop management practices. Moreover, each parcel
presents instability throughout time, as explanatory variables are ranked differently in the
CI-forest from March to July. Parcels A and C are witnessing this effect more noticeably.

4. Discussion

Characterizing the intra-field heterogeneity of crop growth is the first step for defin-
ing field management variable zones in precision agriculture. Several combinations of
“NDI” [7] were tested to explore the possibilities of the UAV-borne MicaSense® RedEdge-
MTM sensor to characterize the growth heterogeneity throughout the growing season. The
combination of red-edge and red bands was the most suitable to show the continuity in
winter wheat crop growth patterns, even at a late growing stage (mid-May). It performed
better than the NDVI, classically used in precision agriculture applications [2] and showing
saturation issues between stem elongation stage (mid-April) and flag leaf stage (mid-May)
of winter wheat crop. Similar patterns have been observed between RENDVI maps and
yield maps (Sp = 0.7), which led us to consider RENDVI maps to be a good predictor for
final yield heterogeneity. As a comparison, Maestrini and Basso [5] showed an in-season
correlation of maximum 0.5 between wheat final yield and NDVI and considered it as a
good predictor for yield heterogeneity. This confirms the potential of RENDVI maps to
characterize the winter wheat crop growth and yield.
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OK is known to be a robust method to produce soil properties maps for agricultural
applications [22–24]. Our study confirmed its robustness considering the small relative
RMSECV obtained for kriged soil property maps (maximum 0.24).

CI-forest models showed the strong influence of soil properties heterogeneity on crop
growth heterogeneity. This link is stronger early in the season (March) and decreases
until harvest, potentially illustrating an increasing effect of intra-annual variability on the
heterogeneity of the crop growth. According to the variable importance analysis, DEM
and SOC importance raised in mid-May. Topography is closely related to concentration
of runoff at the footslopes. A positive correlation has been found between soil wetness
and SOC in numerous studies [33–35]. Between the 17 April 2018 and 15 May 2018 UAV
flights (28 days), there was a total of 49.5 mm precipitation, 33.1 and 12.4 mm of which fell
in 2 consecutive days at the end of April (Figure 2). Hence, this period was quite dry and
the heavy rain storms have probably led to concentration of runoff and higher moisture
contents in the soils of the lower part of the field. We therefore hypothesize that the crop
growth at the end of the growing season was faster where more soil moisture was available.

According to the CI-forest variable importance analysis, the soil properties related
to the most crop growth and yield heterogeneity were K and pH and, to a lower extent,
SOC and Mg. In this study case, they can therefore be considered as limiting factors for
the crop growth and final yield on at least part of the field and we can analyze whether
these are parameters that should be taken into account primarily in such a field to apply a
management zones approach. In the conditions of the silty soils of the Belgian loam belt
and ideal crop growing conditions, Van Koninckxloo and Brassart [36] described optimal
values for the abovementioned soil properties as follows: pH = 6.9; K = 16 mg/100 g;
Mg = 12 mg/100 g; SOC = 1.25 g/100 g. Keeping in mind that soil was sampled after the
harvest of winter wheat crop, which received no input other than nitrogen and has a low
demand for other nutrients, it is interesting to compare such values with our data and
results from the CI-forest analysis. Considering firstly the average values over the whole
field area, pH values ranging from 6.9 to 7.9 can be qualified as alkaline values higher than
the optimal. However, according to Fernandez and Hoeft [37], such basic pH values are still
adequate for winter wheat crop growth. K values ranging from 13.8 to 34.7 mg/100 g are
close to or higher than the optimal value. SOC values ranging from 0.8 to 1.5% are mainly
lower than the optimal ones. Mg values ranging from 5 to 14.7 mg/100 g are also generally
too low compared to optimal values. For the four soil properties identified in our study
as linked to the winter wheat crop growth and final yield heterogeneity, such value range
fluctuations with raw values are quite distant from the expected optimal ones, indicating
the potential to discriminate management variable zones within the field, based on the use
of UAV-embedded multispectral sensor and RENDVI image acquisition. Considering the
crop growth and final yield heterogeneity over the four previous parcels from the former
field layout, parcels B and D clearly indicate higher crop growth and yield values compared
to parcels A and C (Figure 7). Similarly, mean values of variables pH, K, and SOC were
also significantly higher within B and D parcels, while Mg showed significantly higher
value in parcel D only. Considering pH and K factors, as stated above, it is not known
from the literature that increasing values of both factors, per se, has increasing effect on
winter wheat crop growth and yield, but it could be argued that the interaction of both
can explain differences in crop growth and yield. Indeed, as mentioned before, pH values
are quite alkaline and could partially reduce the availability and plant assimilation of K in
this value range [38], but pH limitation is probably not the only explanation, because, as
stated by IPNI [39], availability and uptake of K is often complicated by many interacting
components such as soil and plant characteristics and also fertilizer and management
practices. For soil, one can mention, for instance, its cation exchange capacity, the amount
of available K in the soil solution, the K fixation of the soil, or the nonexchangeable or slowly
available K. K is also known to interact with almost all of the essential macronutrients,
secondary nutrients, and micronutrients, so that crop growth and yield can be affected. As
K amount in B and D parcels are higher, this limitation could be mitigated so that induced
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deficiency effect of K on crop growth and yield is much lower or even avoided in both B
and D situations. On the contrary, a direct effect of higher SOC values in B and D parcels
can explain increase in crop growth and yield. This is supported by a global meta-analysis
conducted by Oldfield et al. [40], showing that winter wheat yield increases with SOC
until it levels off at SOC contents of 2%. This can be explained through the soil biological
activity that increases with higher SOC content. Finally, the effect of Mg soil content is
to be related to K effect as both nutrients show quite similar behavior in the soil–plant
relationship. From this analysis, it is important to conclude that not only the single effect of
limiting or boosting factors on crop growth but also their complex interactions need to be
taken into account.

The analyses and discussion in the previous paragraph illustrate the link that is es-
tablished in our case study between crop growth heterogeneity assessed through UAV
spectral sensor and the observed and geolocalized heterogeneity in specific physical and
chemical soil parameters, leading to the identification and localization of management
variables zones within a field. We considered one growing season after the consolidation of
four former fields two years earlier. The former fields were managed differently and this
remarkably impacted the soil nutrients availability, the pH, and the SOC, as reflected by
the historical management data analysis and the soil sampling analyses. This difference in
historical management induced crop growth heterogeneity, as depicted by the crop growth
maps. Management zones based only on the former field layout and the historical manage-
ment, with the definition of two main zones: A–C and B–D former parcels, would already
allow a good enhancement of organic and calcic amendments or fertilizers management.
In our case study, crop growth spatial patterns are a strong indicator for the legacy of
management on soil properties.

Given the observed strong link between some soil property heterogeneity and winter
wheat crop growth, especially at the tillering stage, we can assume that it would be possible
to describe the heterogeneity resulting from the combination of soil properties limiting crop
growth on at least part of the field from an early-season crop growth map. In our case, the
heterogeneity of the crop growth at tillering is representative of the heterogeneity of pH
and K, themselves strongly correlated to the former field management and layout. As these
crop growth patterns are related to soil properties, the patterns can therefore be useful for
the identification of soil sampling areas. Taking enough soil samples to characterize the
heterogeneity of the field is essential to achieve an optimal site-specific management. Such
an operation completed for this study is labor-intensive and represents a significant cost
(approximately 25 euro per sample) for the farmer, but these data can allow the farmer to
save inputs by applying a management zones approach for several years on its field. This
sampling must be carried out at the most relevant locations to properly characterize the
heterogeneity of a field while optimizing the number of samples required and therefore the
cost of the operation. The analysis of winter wheat crop growth, especially at the beginning
of the growing season, near the tillering stage, allows a characterization of soil-induced
heterogeneity by dividing the field into zones that could be taken into consideration to
target soil analyses and then be used as management zones. Soil analysis remains important
and can be completed or replaced by remote sensing of bare soil to create objective maps of
soil properties, such as SOC [41], or textural properties [42].

5. Conclusions

In precision agriculture, a good assessment of the crop heterogeneity throughout the
growing season is essential as a first step to understand and predict yield heterogeneity.
We have shown that it can be performed efficiently by RENDVI maps derived from a
UAV-borne multispectral sensor. Analyzing and quantifying physical and chemical soil
properties and their spatial variation within a field is essential to complete the assessment
of crop growth by matching both information. Considering field management history is
also very useful to this end. We have demonstrated the usefulness of the CI-forest technique
for quantifying the importance of spatial variation in some soil properties heterogeneity
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on crop growth heterogeneity and suggested the link between. Our case study shows that
such relevant assumptions between crop and soil can be used to reach a better management
of organic and calcic amendments or fertilizers inputs by stressing the most relevant soil
parameters to take into account in site-specific management. However, the analysis of the
causal effect of soil properties on in-season crop growth and final yield illustrate that to
identify a relevant action for inputs modulation, not only will the single effect of soil factors
need to be considered, but also their interaction. It illustrates clearly that in such analysis,
at least agronomy and plant/crop physiology concerns need to be merged for relevant
decision in soil- and crop-adapted management practices aiming to efficiently mitigate soil
heterogeneity within a field based on a management variable zones approach. In this way,
this study indicates the strong link between spatial variation in soil properties and winter
wheat crop growth and suggests that early season crop maps could be sufficient to define
field management zones linked to spatial variation in soil properties.
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the former field layout (see Figure 1). The p-value significance code resulting from ANOVA test for
each variable and between the four previous fields is indicated after the variable name. Significance
code : *** = 0 to 0.001 p-value; ** = 0.001 to 0.01; * = 0.01 to 0.05 ; . = 0.05 to 0.1.
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variable normalized to the sum of variable importance of all variables in the model) influential to crop
growth at four dates during the growing season of the winter wheat crop in 2018 for each of the four
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forest algorithm after the removal of correlated variables. The vertical dashed line indicates the
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