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Abstract

Background: Early and accurate identification of sepsis patients with high risk of in-hospital death can help
physicians in intensive care units (ICUs) make optimal clinical decisions. This study aimed to develop machine
learning-based tools to predict the risk of hospital death of patients with sepsis in ICUs.

Methods: The source database used for model development and validation is the medical information mart for
intensive care (MIMIC) Ill. We identified adult sepsis patients using the new sepsis definition Sepsis-3. A total of 86
predictor variables consisting of demographics, laboratory tests and comorbidities were used. We employed the
least absolute shrinkage and selection operator (LASSO), random forest (RF), gradient boosting machine (GBM) and
the traditional logistic regression (LR) method to develop prediction models. In addition, the prediction
performance of the four developed models was evaluated and compared with that of an existent scoring tool —
simplified acute physiology score (SAPS) Il - using five different performance measures: the area under the receiver
operating characteristic curve (AUROC), Brier score, sensitivity, specificity and calibration plot.

Results: The records of 16,688 sepsis patients in MIMIC Ill were used for model training and test. Amongst them, 2949
(17.7%) patients had in-hospital death. The average AUROCs of the LASSO, RF, GBM, LR and SAPS Il models were 0.829,
0.829, 0.845, 0.833 and 0.77, respectively. The Brier scores of the LASSO, RF, GBM, LR and SAPS Il models were 0.108,
0.109, 0.104, 0.107 and 0.146, respectively. The calibration plots showed that the GBM, LASSO and LR models had good
calibration; the RF model underestimated high-risk patients; and SAPS Il had the poorest calibration.

Conclusion: The machine learning-based models developed in this study had good prediction performance. Amongst
them, the GBM model showed the best performance in predicting the risk of in-hospital death. It has the potential to
assist physicians in the ICU to perform appropriate clinical interventions for critically ill sepsis patients and thus may
help improve the prognoses of sepsis patients in the ICU.

Keywords: Intensive care unit, Sepsis, Prediction model, Machine learning, In-hospital mortality

Background

Sepsis is a life-threatening illness that occurs when the
body’s response to infection is out of balance [1]. It can
trigger body changes that may damage multiple organ
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systems and lead to death [2]. Sepsis has become a major
contributor of public health and economic burden [3, 4].
It is associated with high risk of complications and in-
hospital death, longer hospital stays and higher medical
costs. Today, sepsis has become a major cause of in-
hospital death for intensive care unit (ICU) patients. In
the US, 10% of patients admitted to the ICU have sepsis,
and around 25% of ICU beds are occupied by sepsis
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patients [5-7]. Given the high mortality of sepsis pa-
tients in the ICU, the risk of in-hospital death of patients
with sepsis needs to be discovered the earlier the better.
Early and accurate identification of sepsis patients with
high risk of in-hospital death can help ICU physicians
make optimal clinical decisions, which can, in turn, im-
prove their clinical outcomes [8].

The initial sepsis definition was proposed in 1991, re-
ferred as Sepsis-1 [9]. It was defined as infected patients
meeting two or more of the systemic inflammatory re-
sponse syndrome (SIRS) criteria, including 1) temperature >
38°C or < 36 °C, 2) heart rate > 90/min, 3) respiratory rate >
20/min or partial pressure of carbon dioxide (PaCO,) < 32
mmHg (4.3 kPa), and 4) white blood cell count (WBC) >
12,000/mm® or < 4000/mm> or>10% immature (band)
forms. Sepsis-1 was updated to Sepsis-2 [10] in 2001 by
expanding the list of diagnostic criteria but did not offer al-
ternatives. In effect, the definition of sepsis has remained
largely unchanged for more than two decades. In 2016, a
new sepsis definition, Sepsis-3 [1], was proposed. In Sepsis-
3, instead of checking the SIRS criteria as in previous defini-
tions, infected patients who have a sequential organ failure
assessment (SOFA) score [11] higher than 2 are defined as
having sepsis.

Some scoring tools have been developed to assess the ill-
ness severity of patients with sepsis. Amongst them, the sim-
plified acute physiology score (SAPS) II [12]; the acute
physiology and chronic health evaluation (APACHE) II, III
and IV scores [13-15]; and the SOFA score are frequently
used severity assessment tools in the ICU. Patient vital signs,
laboratory results and demographic statistics are risk factors
used in these scoring systems for severity assessment. Most
of these severity scores were developed decades ago. They
may perform well in the population or clinical settings at the
time when they were developed. However, the performance
of these severity scores has declined due to the fact that the
population and clinical settings have changed over the time.
Moreover, some studies [16, 17] showed that the calibration
and discrimination capabilities of these severity scores are
poor in predicting the risk of in-hospital death of sepsis pa-
tients. In addition, there is a specific severity score particu-
larly for sepsis patients: Sepsis Severity Score (SSS) [18]. The
SSS was developed as a specific severity score for predicting
in-hospital mortality of sepsis patients. However, a study [17]
showed that the discrimination performance of SSS is not as
good as that of APACHE 1V in predicting the risk of in-
hospital death of patients with sepsis, and the calibration
capability of SSS is poor.

Given the poor performance of existing severity scores,
some new models have been developed for predicting
the risk of in-hospital death amongst ICU patients with
sepsis [19-21]. Fang et al. [22] developed and validated a
scoring system for predicting 28-day mortality risk of pa-
tients with sepsis. The corresponding area under the
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receiver operating characteristic curve (AUROC) gener-
ated by the scoring system is 0.789. Xie et al. [23] used
clinical features and biomarkers as predictors to develop
a model based on traditional logistic regression (LR) al-
gorithm for predicting the mortality risk of sepsis pa-
tients. The AUROC of their model is 0.778.

With the accumulation of big data and the develop-
ment of techniques for data storage, machine learning
methods have attracted considerable research attention
[24-26]. Several innovative and pragmatic machine
learning methods such as random forest (RF) [27], gradi-
ent boosting machine (GBM) [28] and the least absolute
shrinkage and selection operator (LASSO) [29] which is
a type of linear regression using shrinkage, have been
proposed, and these models have good prediction per-
formance in medicine. Some machine learning-based
models have been developed for ICU mortality predic-
tion in the literature [30, 31]. In sepsis area, Zhang et al.
[32] used the LASSO method to build a tool for predict-
ing the mortality risk of sepsis patients based on the
medical information mart for intensive care (MIMIC) III
dataset [33], and their research results showed that the
LASSO-based prediction model was superior to SOFA
score in discrimination. Taylor et al. [34] employed ma-
chine learning methods to build mortality prediction
models for patients with sepsis, and their research re-
sults showed that the RF model performed better than
the LR model in discrimination. Relevant studies about
mortality prediction for sepsis patients are listed in
Table 1, where the dataset, methodology, predictors,
outcome and sepsis definition used in each study were
presented.

From Table 1, we can find that most of the existing
relevant studies have limitations such as limited sample
sizes, limited predictor variables and old sepsis defini-
tions, and most of them used traditional analytic
methods such as LR to build models. LR models assume
that the dependent variable has a linear functional rela-
tionship with predictor variables after a logit transform-
ation, and this assumption may affect the model’s
discrimination power as the relationship may be non-
linear [36]. A previous study [37] recommended using
the GBM model to predict the in-hospital mortality for
sepsis as it often outperforms the RF model. However,
few studies have employed the GBM model to predict
the mortality of ICU sepsis patients.

Therefore, driven by the need of using big data and
the latest sepsis definition to develop in-hospital mortal-
ity prediction models for sepsis patients in the ICU, we
used the GBM, RF, LASSO and LR methods together
with the latest sepsis definition criteria to build models
for predicting the risk of in-hospital death of patients
with sepsis in the ICU and compared their prediction
performance with the existent scoring tool SAPS II
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Table 1 Relevant studies about mortality prediction for sepsis patients
Authors  Title Dataset Methodology Predictors Outcome  Sepsis
definition
Masson, S. Presepsin (soluble CD14 subtype) A multicentre, Cox Presepsin level, procalcitonin level 28-day/ Sepsis-2
etal. [19]  and procalcitonin levels for randomised regression and some covariates ICU/90-
mortality prediction in sepsis: data  Albumin Italian model day
from the Albumin Italian Outcome  Outcome Sepsis mortality
Sepsis trial trial, 100 patients
Adrie C. Model for predicting short-term A multicentre Generalised SAPS Il and LOD scores at ICU 14-day Sepsis-2
et al. [20]  mortality of severe sepsis database including linear model  admission, septic shock, multiple mortality
data from 12 ICUs, organ failure, comorbidities, within ICU
2268 patients procedures, agents, bacteraemia stay
and sources of infection
Ripoll, Sepsis mortality prediction with the  MIMIC I Support SOFA and SAPS scores at ICU ICU Sepsis-2
VJR. et al. Quotient Basis Kernel vector admission mortality
21] machines
(SVMs), LR,
SAPS
Fang W-F  Development and validation of Sepsis patients LR Monocyte HLA-DR" expression, 28-day Sepsis-3
etal. [22]  immune dysfunction score to admitted to ICU at plasma G-CSF" level, plasma IL-10  mortality
predict 28-day mortality of sepsis a hospital in level, and serum SeMo' ratio
patients Taiwan, 151
patients
Xie, Y. Using clinical features and Protocol-based LR Clinical features and biomarkers 60-day Not
etal. [23]  biomarkers to predict 60-day mor-  care in early septic obtained during the first 24 h of mortality  mentioned
tality of sepsis patients shock trial, around hospital admission
530 patients
Poucke, Scalable predictive analysis in MIMIC I Naive Bayes,  Demographics, comorbidities, types ICU NA
SV.etal.  critically ill patients using a visual LR, RF, of care unit, platelet count mortality
[31] open data analysis platform AdaBoost,
Bagging,
Stacking, SYM
Zhang, Z.  Development of a novel score for ~ MIMIC Il LASSO, LR Demographics, clinical and Hospital Sepsis-2
& Hong, Y the prediction of hospital mortality laboratory variables recorded during mortality
[32]. in patients with severe sepsis: the the first 24 h in ICU
use of electronic healthcare records
with LASSO regression
Taylor, RA. Prediction of in-hospital mortality in  Adult ED” visits RF, CART, LR Demographics, previous health Hospital Sepsis-2
etal. [34] emergency department patients over 12 months, status, ED health status, ED services  mortality
with sepsis: a local big data-driven, 4676 patients rendered and operational details
machine learning approach
Pregernig, Prediction of mortality in adult 44 articles in Qualitative Angiopoietin 1 and 2, HMGB1, 28-day/30- Sepsis-1/
A etal patients with sepsis using six English analysis, meta- SRAGE', STREM -1, suPAR’ day/ICU/  Sepsis-2/
[35] biomarkers: a systematic review and analysis hospital/  Sepsis-3
meta-analysis 90-day
mortality

“Abbreviations: HLA-DR Human leukocyte antigen D-related, "G-CSF Granulocyte-colony stimulating factor, IL Interleukin, SeMo Segmented neutrophil-to-monocyte,
ED Emergency department, HMGB1 High mobility group box 1 protein, sRAGE soluble receptor for advanced glycation endproducts, sTREM soluble triggering
receptor expressed on myeloid cells 1, suPAR soluble urokinase-type plasminogen activator receptor

Methods

Dataset and subjects

MIMIC III, an ICU database from the Beth Israel Dea-
coness Medical Center (BIDMC) [33], was employed for
model derivation and validation. As a database accessible
to researchers worldwide, MIMIC III contains over 40,
000 records of patients receiving critical care in the ICU
at BIDMC between 2001 and 2012. The diagnostic
codes, vital signs, laboratory tests, demographics and
some other clinical characteristics of each patient were
included in MIMIC III. The Institutional Review Board
of the BIDMC and Massachusetts Institute of

Technology approved the research use of MIMIC III for
researchers having attended their training course.

Adult patients between 18 and 90 years old were in-
cluded in this study. We identified adult sepsis patients
using the latest Sepsis-3. According to the Sepsis-3, in-
fected patients who have a SOFA score higher than 2
are defined as having sepsis. First of all, we need to iden-
tify infected patients. We employed the International
Classification of Diseases, ninth revision, Clinical Modifi-
cation (ICD-9-CM) diagnosis codes provided by Angus
et al. [38] to identify infected patients from the MIMIC-
III database. Furthermore, we used the SOFA score as
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another criterion to identify sepsis patients from the in-
fected. For those patients with twice or more ICU ad-
missions during one hospitalisation, we included only
the patient’s first ICU admission. Patients whose records
have a predictor variable missing rate higher than 30%
were excluded.

Predictor variables and the primary outcome
The primary outcome of this study is in-hospital mortal-
ity of sepsis patients in the ICU.

In the process of predictor selection, we made refer-
ence to the established scoring tools, SAPS II and APAC
HE III, and considered variables such as obesity, serum
lactate and international normalised ratio (INR), which
have been found relevant to mortality, as predictors to
construct the mortality prediction models [32, 38].

To ensure the availability of all predictor variables in
prediction model development, we excluded variables
with data missing rate higher than 30%. Finally, a total
of 86 predictor variables consisting of demographics, la-
boratory tests and comorbidities were used as independ-
ent predictor variables for model development.

MIMIC-III has some time-stamped physiological
data. For example, blood pressure and heart rate are
measured hourly. In model construction, as variations
and sudden changes could be more informative than
average values of time-stamped measurements, the
minimum and maximum values during the first 24h
of these variables for each ICU stay were used as parallel
inputs for prediction models. All predictor variables are
listed in Table 2. All predictor variables were extracted or
calculated from the patient data recorded in the MIMIC
III database.

Prediction models

In this study, three machine learning methods, namely,
LASSO, RF and GBM, together with the frequently used
LR method were used to develop in-hospital mortality
prediction models. In addition, the established scoring
tool, SAPS II, was employed for the prediction. A brief
introduction of the SAPS II, LR, LASSO, RF and GBM
models is provided as follows.

SAPS Il
SAPS 1II is a scoring tool developed to measure the disease
severity of patients (>15) admitted to ICUs. SAPS II was de-
veloped based on a large international sample of patients. It
can provide an estimate of the risk of death without having
to specify a primary diagnosis. Detailed variables and score
assignment in SAPS II are shown in Table 3.

The probability of in-hospital death is estimated from
the SAPS II score as follows:
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Table 2 Predictor variables used in this study

Predictors

Acute physiology (first 24 h in Chronic health status

the ICU)

Heart rate*

Systolic blood pressure*
Diastolic blood pressure*

Mean blood pressure*
Respiratory rate*

Temperature®

SpO2* (blood oxygen saturation)
Total CO,*

pCO,* (partial pressure of CO,)

pH* (acidity in the blood)
Urine output

Glasgow Coma Score (GCS)
GCS (eye)

GCS (motor)

GCS (verbal)

Anion gap*

Bicarbonate*

Creatinine®

Chloride*

Glucose*

Haematocrit*
Haemoglobin*

Lactate®

Platelet*

Potassium*

Partial thromboplastin time*
INR¥

Prothrombin time*

Sodium*

Blood urea nitrogen (BUN)*
WBC*

Acute kidney injury

Elixhauser comorbidity index
Congestive heart failure
Cardiac arrhythmias

Valvular heart disease
Pulmonary circulation
Peripheral vascular
Hypertension

Other neurological diseases

Chronic obstructive pulmonary
disease

Diabetes without complications
Diabetes with complications
Hypothyroidism

Renal failure

Liver disease

Metastatic cancer
Coagulopathy

Obesity

Fluid electrolyte

Alcohol abuse

Depression

Renal replacement therapy

Other

Gender
Weight loss
Ventilation
Age
Weight

SAPS Il score (first 24 h in the
ICU)

SOFA score (first 24 h in the ICU)

*1 each predictor marked with * means that it is a time-stamped variable, and
its corresponding minimum and maximum values within the first 24 h in the
ICU were used as inputs in model development

logit = - 7.763 + (0.0737 4+ SAPS II score)
+(0.9971x In(SAPS II score + 1) (1)

elogit

T 1+ elogtt

p (2)



Kong et al. BMC Medical Informatics and Decision Making

Table 3 Variables and score assignment in SAPS I

Variables Maximum scores
Acute physiology Temperature 3

Heart rate "

Systolic blood pressure 13

WBC 12

Bilirubin 9

Serum sodium 5

Serum potassium 3

Serum bicarbonate 6

BUN 10

Urine output 1
Pa0,%or FiO,? 11
GCS 26
Chronic health status ~ AIDS? 17

Haematologic malignancy 10

Metastatic cancer 9
Other Age 18

Type of admission 8
Overall score 182

@Abbreviations: AIDS Acquired immunodeficiency syndrome, PaO, Partial
pressure of oxygen, FiO, Fraction of inspired oxygen

LR

The LR method has been widely used in medical re-
search. The mathematical function between predictors
and the risk of in-hospital death can be described as
follows:

logit = log <1P%p) = Bo + Bixr + Boxa + -
+Bxi+ o+ Byxan (3)

where p denotes the probability of in-hospital death,
x{i=1,2,...,N) represents independent predictors, f5;(i =
1,2, ..., N) are the coefficients associated with predictors,
and N is the number of all predictors.

LASSO

The LASSO model was developed in 1996. It is similar
to linear regression except that it shrinks the coefficients
of some variables with multicollinearity towards zero via
regularisation [39]. As a result, the coefficients of some
correlated predictors will be zero after model training,
and a so-called sparse model with only important pre-
dictors can be generated.

In LASSO regression, the relationship between all po-
tential predictor variables x;(i=1,2,...,N;j=1,2,...,P)
and the outcome y,(i=1,2,...,N) is assumed to be simi-
lar to that in linear regression. Here, N denotes the
number of all cases in the training dataset, and P
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denotes the number of all predictor variables. Further-
more, the LASSO regression is different from linear re-
gression in that it uses coefficient shrinkage. The
coefficients in the LASSO regression are generated
through model training by solving the following object-
ive function:

min{ 20 (-0 S0 t) #0507}
(4)

The first half of the objective function is about the
training loss, which is the difference between model gen-
erated results and the observed outcomes, measuring
how well the model fits the training dataset. The second
half of the objective function is for regularisation, the
penalty on the coefficients, which measures the com-
plexity of the model. It is through the regularisation that
coefficients of correlated variables can be shrinked to 0
in LASSO regression. In the function, the parameter 1 >
0 is for controlling the amount of shrinkage, and a larger
A means a greater shrinkage amount.

We used the glmnet package in R (https://www.r-pro-
ject.org) software to train the LASSO model. In the
LASSO model training, the penalty on the S-coefficients
is controlled by the tuning parameter A, and the optimal
A was found via cross-validation (CV) in the glmnet
package.

RF

The RF model is a type of ensemble-learning model that
uses multiple decision trees as its base models, and a
majority voting system is used as the final aggregation
method to synthesise the classification results of all the
base models [27]. The training of decision trees in a RF
model utilises the same learning algorithm, which uses
Gini index [40] as the criterion for selecting appropriate
variables for different nodes in tree growing. For more
detailed introduction of the RF model, readers can refer
to article [41].

We used the randomForest package in R to fit the RF
model. In the RF model training, we set the total num-
ber of variables in each decision tree as the default value
in R. We set the candidate numbers of all decision trees
in the RF model to 500, 1000, 1500 and 2000, and the
number that resulted in the highest AUROC was se-
lected. We finally selected 1000 as the number of deci-
sion trees in our RF model.

GBM

While the RF model is an ensemble of parallel decision
trees, the GBM model builds an ensemble of decision
trees in a sequential way, in which the training purpose
of each decision tree is to minimise the discrepancies
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between the observed and predicted outcomes made by
all its preceding tress [28, 42]. In a GBM model, the en-
semble of decision trees is trained sequentially, where
each decision tree gradually corrects for the residuals of
all its preceding trees via the gradient descent method.
The training procedure of a GBM model consecutively
and iteratively fits new decision trees to generate esti-
mates closer to the observed outcomes. The training of
the GBM model is illustrated as follows.

Let M be the number of all iterations or the number of all
decision trees in a GBM model. F,,_(x)(m=2,3...,M) is
used to represent the GBM model in current status, which
contains m-1 decision trees. Then, 4, (x)(m=1,2,...,M) is
used to represent each decision tree that the GBM model at-
tempts to find and include. Each single decision tree /,,(x) is
trained using the gradient boosting method, where the nega-
tive gradient of the loss function defined for the GBM model
is used for model fitting. F,,(x) is used to represent the GBM
model after including the mth decision tree /,,,(x). The itera-
tive updating process of the GBM model, F,,(x), can be writ-
ten as follows:

Frn(x) =Fy- l(x) + VYmhm(x) (5)

In the above formula, the coefficient y,, is calculated
in the process of minimising the loss function of F,,(x)
by a line search strategy. Overfitting is avoided by using
shrinkage as a regularisation method, where /,,(x) is
multiplied by a small learning rate v in each training it-
eration. Fj(x) is the final model in which m reaches M.

We used the gbm package in R software to fit the GBM
model. The grid search, an exhaustive searching strategy
which attempts to find optimal parameters through a sub-
set of manually specified values, was employed in the
GBM model training. We set the candidate numbers of
decision trees in the ensemble GBM model to 500, 1000,
1500 and 2000 and the candidate learning rates to 0.01
and 0.001. These candidate values were selected in accord-
ance with a previous study by Hastie et al. [43]. We finally
selected 2000 as the number of trees in the ensemble
model and 0.01 as the learning rate.

The hypothesis of this study was that machine
learning-based prediction models perform better than
traditional regression models and existing scoring tools,
and ensemble-learning models perform better than
single-learning models.

Statistical analysis

After patient and variable exclusion, the mean value of
each variable was utilised to compensate for the missing
values of the corresponding variable for final analysis.
We employed R 3.40 to perform calculations and statis-
tical analysis. We employed mean + standard deviation,
percentages or actual numbers to describe patient data
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characteristics. We employed five-fold CV to find opti-
mal model parameters and the model with best predic-
tion performance amongst the developed models. By
using the five-fold CV method, the whole dataset was di-
vided into five folds, and five rounds of model training
and test were conducted. In each round, four folds were
used as the training dataset, and the last one was used as
the test dataset. The test fold was different in each
round. In this study, the model with the best average
prediction performance on five test datasets was consid-
ered the optimal model.

We compared the developed models using five differ-
ent performance measures: Brier score [44], AUROC
[45], sensitivity, specificity and calibration plot. Brier
score measures the overall prediction performance,
which denotes the accuracy of a prediction, of a model.
The best possible score is 0 for a totally accurate predic-
tion, whereas the lowest possible score is 1 for a wholly
inaccurate prediction. AUROC is an overall measure of
discrimination of a model considering sensitivity and
specificity, and it denotes the capability to distinguish
the survivors from the deceased. Calibration plot is an
approach to illustrate the calibration capability of a
model, representing the consistency between the predic-
tions and observed outcomes.

Results

A total of 16,688 patients with sepsis were included in
model derivation, amongst which 2949 (17.7%) died.
The proportions of males in all patients, in survivors and
in decedents were 54.5, 54.1 and 56.05%, respectively.
The average age of all patients, survivors and decedents
were 65.61+/-15.01, 65.00+/-15.11 and 68.46+/— 14.19
years old, respectively. The average SOFA scores in all
patients, the survivors and decedents were 5.57+/- 3.06,
5.10+/-2.67 and 7.77+/- 3.72, respectively. Table 4 de-
scribes the characteristics of sepsis patients included in
this study. Compared with the survivors, the decedents
were older and had higher SOFA and SAPS II scores,
longer ICU stays and shorter hospitals stays.

Table 5 presents the average AUROC value, Brier score,
the sensitivity and specificity corresponding to the optimal
cut-off point of each model in fivefold CV. The average
AUROC values of the LASSO, GBM, RF, LR and SAPS II
models were 0.829 (95% confidence interval (CI): 0.827—
0.831), 0.845 (95%CI: 0.837-0.853), 0.829 (95%CI: 0.823—
0.834), 0.833 (95%CIL 0.830—0.838) and 0.77 (95%CL
0.760-0.780), respectively. The average Brier scores of the
LASSO, GBM, RF, LR and SAPS II models were 0.108
(95%CIL: 0.107-0.109), 0.104 (95%CI: 0.102—0.105), 0.109
(95%CI: 0.108—-0.109), 0.107 (95%CI: 0.105-0.108) and
0.146 (95%CI: 0.142—0.150), respectively.

Figure 1 illustrates the calibration plots of the five
models. It shows that the LASSO, LR and GBM models
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Table 4 Characteristics of included sepsis patients
Items Statistics
All Survivors Decedents

Total number 16,688 13,739 2949
Age (year) 65.61 £ 15.01 65.00+15.11 6846+ 14.19
Gender

Male 9087 (54.5%) 7434 (54.1%) 1653 (56.05%)

Female 7601 (45.5%) 6305 (45.9%) 1296 (43.95%)
SOFA score, 1st day of ICU admission 5.57+3.06 5104267 7.77+372
SAPS Il score, 1st day of ICU admission 40.87 £13.51 3855+ 1218 51.68+14.13
Hospital length of stay (day) 1442 +14.77 14.55+14.26 1382+ 1696
ICU length of stay (day) 641+£852 6.07 £830 799+9.34
Number of deaths 2949 (17.7%) NA NA

had good calibration, whereas the RF model underesti-
mated the mortality risk of high-risk sepsis patients.
Meanwhile, the SAPS II model showed the poorest
calibration.

Discussion
In this study, sepsis patient data were first extracted
from the MIMIC III database. Then, four data-based
tools, including LASSO, GBM, RF and LR models, were
developed to perform in-hospital mortality prediction.
Finally, the prediction performances of the fours tools
were compared with the existent scoring tool SAPS II.
In general, the criteria for modelling method selection
include model performance and interpretability. As for
the model performance, ensemble-learning models usually
have better prediction performance than single-learning
models [46]. Regarding model interpretability, traditional
regression models have considerably better interpretability
than black-box machine learning models. Therefore, we
considered machine learning and regression models and
ensemble- and single-learning models in model selection.
Finally, we selected the LASSO, GBM, RF and LR models.
As an ensemble model, the RF model has good prediction
performance and good interpretability. The GBM model
is also an ensemble model with good performance, but its
interpretability is poorer than that of the RF model. The
LASSO model is a type of regression model with good in-
terpretability but fair performance, whereas the LR model

Table 5 Performance comparison of five models

is a traditional regression model with good interpretability.
We attempted to find a trade-off between the model per-
formance and interpretability in model selection.

Regarding identification of sepsis patients using
Sepsis-3, a SOFA score can be calculated for each pa-
tient in MIMIC III database and assessed whether the
number is larger than 2. However, as infections have
varied causes and infected sites, different diagnoses may
be provided for infected patients. Thus, various diseases
are related to infections. In this study, we employed the
ICD codes provided by Angus et al. [38] to identify in-
fected patients from MIMIC III. These ICD codes for in-
fections have already been tested by a study [47].
Therefore, ICD codes can be reasonably used to identify
sepsis patients from MIMIC III.

In this study, the observed mortality rate of the whole
dataset was around 17.7%. However, we performed no
processing on the imbalance because the prediction per-
formance of all models developed from the dataset were
acceptable. To eliminate the effect caused by data imbal-
ance on the trained models, we employed the AUROC,
which considers sensitivity and specificity and cannot be
wavered by data imbalance, to evaluate prediction per-
formance. Therefore, data imbalance would not affect
the identification of optimal prediction models.

As for the predictor variable inclusion, as this study
aimed to develop in-hospital mortality prediction models
based on all available physiology, chronic health status,

Model Overall performance Discrimination

Brier score 95% ClI AUROC 95% ClI Sensitivity 95% ClI Specificity 95% ClI
LASSO 0.108 0.107-0.109 0.829 0.827-0.831 0.744 0.721-0.767 0.754 0.731-0.777
GBM 0.104 0.102-0.105 0.845 0.837-0.853 0.771 0.750-0.792 0.755 0.722-0.789
RF 0.109 0.108-0.109 0.829 0.823-0.834 0.765 0.756-0.774 0.740 0.719-0.761
LR 0.107 0.105-0.108 0.833 0.830-0.838 0.760 0.740-0.780 0.748 0.724-0.772
SAPS I 0.146 0.142-0.150 0.77 0.760-0.780 0.697 0.668-0.725 0.714 0.695-0.734
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Fig. 1 Calibration plots of the LASSO, LR, SAPS II, RF and GBM models

demographics and several other hospitalisation-related
variables during the first 24 h after ICU admission, we
excluded medications or procedures, which would alter
the course of health trajectory of sepsis patients. All pre-
dictor variables used in this study aimed for mortality
prediction instead of sepsis diagnosis. Thus, these pre-
dictors may include both pre-sepsis and post-sepsis vari-
ables but are restricted to the first 24 h after ICU
admission. Similar to the established scoring tools SAPS
IT and APACHE III, the models developed in this study
are stationary and can be used after the first 24 h.
Amongst the five prediction models, the GBM model
had the best discrimination and overall performance,
and it also had a good calibration as illustrated by the
calibration plot. Unlike the LASSO and LR models, the
RF and GBM models are ensemble learning models with
decision tree as base models; both belong to a type of
non-parametric machine learning technique having no
requirements of distribution or parameter of the training
dataset [48]. Ensemble learning methods based on decision
tress are superior to learning techniques with parametric re-
quirements, such as LR, because non-parametric methods
have advantages in handling high-volume data without spe-
cific distribution patterns. Although the basic idea behind
the GBM and RF models is to aggregate many individual
weaker decision trees into an ensemble and stronger learner,
a GBM model generally produces better performance than a
RF model [42, 49, 50]. A RF model trains each tree inde-
pendently and uses a random sample of the data for training,

whereas a GBM model builds an ensemble of decision trees
in a sequential way, in which each new decision tree is fitted
through correcting for the residuals of all its preceding trees.
This condition means that each new tree in a GBM model
corrects the errors made by all previously trained trees in the
model [42]. However, the GBM model has poorer interpret-
ability than RF. The LR model performed worse than the
GBM model by all measures but showed better performance
than the RF and LASSO models in terms of Brier score and
AUROC. The SAPS II model exhibited the poorest predic-
tion performance amongst all these models. This condition
implies that the SAPS II model requires customisation when
applied to a different patient population.

In effect, machine learning-based prediction models
have advantages in handling high-dimension data, which
indicates that more clinical variables can be considered
as model inputs than those used in existing severity
scoring systems, with the benefit of discovering mean-
ingful clinical variables that have prediction effects on
in-hospital mortality.

Compared with existing studies, our research has sev-
eral strengths. Firstly, we extracted sepsis patient data
from the MIMIC-III dataset using the latest Sepsis-3.
Secondly, we used three different machine learning
methods LASSO, RF and GBM for prediction model de-
velopment and compared their prediction performances
with those of traditional LR and SAPS II models. The
originality of this study lies in clinical application other
than methodology. For the first time in the literature,
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the GBM model was compared with RF, LASSO, LR and
SAPS II models in developing in-hospital mortality pre-
diction models for sepsis patient in ICU.

This study also has limitations. Firstly, the MIMIC-III
dataset is a dataset containing only patients from a single
medical centre. The application of the developed GBM-
based model to other datasets or population needs fur-
ther clinical evaluation. Secondly, the data used for pre-
diction model training and test was a subset of MIMIC-
III dataset. The datasets regarding high-resolution wave-
forms were excluded in the analysis in this study.
Thirdly, the developed models were based on the base-
line data during the first 24 h in ICU and cannot be used
to provide dynamic prediction.

Conclusions

This study contributes to clinical areas with an optimal
GBM-based in-hospital mortality prediction model for
sepsis patients in ICU. The prediction model has the po-
tential to aid ICU physicians to determine which pa-
tients have a high mortality risk and who should be
prioritised in treatment, thus enabling them to make op-
timal clinical interventions and improve prognoses of
sepsis patients. As all the variables used in this study for
model construction are routinely collected by the infor-
mation systems in ICU, utilising machine learning-based
mortality prediction models to aid ICU physicians in
clinical practice is feasible. We plan to computerise a
GBM-based tool for predicting the risk of in-hospital
death amongst patients with sepsis in the future and in-
tegrate it into the existing ICU information system for
real-time patient mortality monitoring and clinical deci-
sion support. Our future studies would prospectively
evaluate the effectiveness of this mortality prediction
model and system and check whether it improves the
outcome of sepsis patients in clinical practice.

Abbreviations

ICU: Intensive Care Unit; MIMIC: Medical Information Mart for Intensive Care;
LASSO: Least Absolute Shrinkage and Selection Operator; GBM: Gradient
Boosting Machine; RF: Random Forest; LR: Logistic Regression; AUROC: Area
Under the Receiver Operating Characteristic curve; APACHE: Acute
Physiology And Chronic Health Evaluation; SAPS: Simplified Acute Physiology
Score; SOFA: Sequential Organ Failure Assessment; SSS: Sepsis Severity Score;
BIDMC: Beth Israel Deaconess Medical Center; ICD-9-CM: International
Classification of Diseases, ninth revision, Clinical Modification

Acknowledgements

The authors would like to thank the reviewers of this manuscript for their
valuable comments, which have helped the authors improve the paper
significantly.

Declarations of interest
None.

Competing interest
The authors declare that they have no competing interests.

(2020) 20:251

Page 9 of 10

Authors’ contributions

Conception and design: GK and KL; Collection and assembly of data: KL, YH
and GK; Data analysis and interpretation: KL; Manuscript writing: GK and KL.
All authors provided valuable inputs and comments on manuscript revision.
The final manuscript was written by GK, and all authors have read and
approved the final manuscript.

Funding

This study was supported by the National Natural Science Foundation of
China under Grant Nos. 81771938 and 91846101, by Peking University in
China under Grant Nos. BMU2018MX020 and PKU2017LCX05, and by the
University of Michigan Health System-Peking University Health Science Cen-
ter Joint Institute for Translational and Clinical Research under Grant No.
BMU2020JI011 in the whole research process.

Availability of data and materials
The dataset used in this study, MIMIC Ill, is available at https://mimic.
physionet.org/.

Ethics approval and consent to participate
Research use of MIMIC Ill has been approved by the Institutional Review
Board of the BIDMC and Massachusetts Institute of Technology [33].

Consent for publication
Not applicable.

Competing interests
All authors have declared that they do not have any potential conflicts of
interest.

Author details

"National Institute of Health Data Science, Peking University, Beijing, China.
“Center for Data Science in Health and Medicine, Peking University, Beijing,
China. *Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, Beijing, China. *Medical Informatics Center, Peking
University, Beijing, China.

Received: 13 January 2020 Accepted: 20 September 2020
Published online: 02 October 2020

References

1. Singer M, Deutschman CS, Seymour CW, Shankarhari M, Annane D, Bauer M,
Bellomo R, Bernard GR, Chiche J, Coopersmith CM. The third international
consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;
315(8):801-10.

2. Zimmerman JJ. Pediatric sepsis from start to finish. Pediatr Crit Care Med.
2015;16(5):479-80.

3. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann
P, Angus DC, Reinhart K. Assessment of global incidence and mortality of
hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit
Care Med. 2016;193(3):259-72.

4. OulL, Chen J, Hillman K, Flabouris A, Parr M, Assareh H, Bellomo R. The impact
of post-operative sepsis on mortality after hospital discharge among elective
surgical patients: a population-based cohort study. Crit Care. 2017;21(1):34.

5. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the
United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546-54.

6. Sheetrit E, Nissim N, Klimov D, Fuchs L, Elovici Y, Shahar Y. Temporal pattern
discovery for accurate sepsis diagnosis in ICU patients. arXiv:170901720; 2017.

7. Dremsizov T, Kellum J, Angus D. Incidence and definition of sepsis and
associated organ dysfunction. Int J Artif Organs. 2004;27(5):352-9.

8. Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandia F, Loma
AM, Nieto C, Diego R, Ramos E. Early natural killer cell counts in blood
predict mortality in severe sepsis. Crit Care. 2011;15(5):R243.

9. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH,
Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the
use of innovative therapies in sepsis. Chest. 1992;101(6):1644-55.

10.  Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal
SM, Vincent J-L, Ramsay G, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international
Sepsis definitions conference. Intensive Care Med. 2003;29(4):530-8.

11, Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonga A, Bruining H,
Reinhart C, Suter P, Thijs L. The SOFA (Sepsis-related organ failure


https://mimic.physionet.org/
https://mimic.physionet.org/

Kong et al. BMC Medical Informatics and Decision Making

20.

22.

23.

24.

25.

26.

27.
28.

29.

30.

32.

33.

34,

35.

assessment) score to describe organ dysfunction/failure. Intensive Care Med.
1996,22:707-10.

Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology
score (SAPS 1) based on a European/north American multicenter study.
JAMA. 1993,270(24):2957-63.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of
disease classification system. Crit Care Med. 1985;13(10):818-29.

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG,
Sirio CA, Murphy DJ, Lotring T, Damiano A. The APACHE Il prognostic
system: risk prediction of hospital mortality for critically lll hospitalized
adults. Chest. 1991;100(6):1619-36.

Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and
chronic health evaluation (APACHE) IV: hospital mortality assessment for
today's critically ill patients. Crit Care Med. 2006;34(5):1297-310.

Zygun DA, Laupland KB, Fick GH, Sandham JD, Doig CJ. Limited ability of
SOFA and MOD scores to discriminate outcome: a prospective evaluation in
1,436 patients. Can J Anesth. 2005;52(3):302-8.

Khwannimit B, Bhurayanontachai R, Vattanavanit V. Validation of the sepsis
severity score compared with updated severity scores in predicting hospital
mortality in sepsis patients. Shock. 2017;47(6):720-5.

Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, Dellinger RP.
Sepsis severity score: an internationally derived scoring system from the surviving
sepsis campaign database. Crit Care Med. 2014:42(9):1969-76.

Masson S, Caironi P, Spanuth E, Thomae R, Panigada M, Sangiorgi G,
Fumagalli R, Mauri T, Isgro S, Fanizza C. Presepsin (soluble CD14 subtype)
and procalcitonin levels for mortality prediction in sepsis: data from the
albumin Italian outcome Sepsis trial. Crit Care. 2014;18(1):R6.

Adrie C, Francais A, Alvarez-Gonzalez A, Mounier R, Azoulay E, Zahar J-R,
Clec'h C, Goldgran-Toledano D, Hammer L, Descorps-Declere A. Model for
predicting short-term mortality of severe sepsis. Crit Care. 2009;13(3):R72.
Ripoll VJR, Vellido A, Romero E, Ruiz-Rodriguez JC. Sepsis mortality
prediction with the quotient basis kernel. Artif Intell Med. 2014;61(1):45-52.
Fang W-F, Douglas IS, Chen Y-M, Lin C-Y, Kao H-C, Fang Y-T, Huang C-H,
Chang Y-T, Huang K-T, Wang Y-H. Development and validation of immune
dysfunction score to predict 28-day mortality of sepsis patients. PLoS One.
2017;12(10):0187088.

Xie Y, Yabes J, Parker R, Clermont G. 1485: using clinical features and biomarkers to
predict 60-day mortality of sepsis patients. Crit Care Med. 2018:46(1):726.

Richards G, Rayward-Smith VJ, Sonksen P, Carey S, Weng C. Data mining for
indicators of early mortality in a database of clinical records. Artif Intell Med.
2001,22(3):215-31.

Mahdi MA, Al_Janabi S. A novel software to improve healthcare base on
predictive analytics and mobile services for cloud data centers, vol. 2020.
Cham: Springer International Publishing; 2020. p. 320-39.

Al-Janabi S, Mahdi MA. Evaluation prediction techniques to achievement an
optimal biomedical analysis. Int J Grid Utility Comput. 2019;10(5):512-27.
Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.

Friedman JH. Greedy function approximation: a gradient boosting machine.
Ann Stat. 2000;29(5):1189-232.

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B Methodol. 1996;58(1):267-88.

Gurm HS, Kooiman J, LaLonde T, Grines C, Share D, Seth M. A random forest
based risk model for reliable and accurate prediction of receipt of
transfusion in patients undergoing percutaneous coronary intervention.
PLoS One. 2014;9(5):e96385.

Van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Laenen MV, Celi LA, De
Deyne C. Scalable predictive analysis in critically ill patients using a visual
open data analysis platform. PLoS One. 2016;11(1):e0145791.

Zhang Z, Hong Y. Development of a novel score for the prediction of
hospital mortality in patients with severe sepsis: the use of electronic
healthcare records with LASSO regression. Oncotarget. 2017;8(30):49637-45.
Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B,
Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care
database. Sci Data. 2016;3:160035.

Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall
MK Prediction of in-hospital mortality in emergency department patients
with Sepsis: a local big data-driven, Machine Learning Approach. Acad
Emerg Med. 2016;23(3):269-78.

Pregernig A, Miller M, Held U, Beck-Schimmer B. Prediction of mortality in
adult patients with sepsis using six biomarkers: a systematic review and
meta-analysis. Ann Intensive Care. 2019,9(1):125.

(2020) 20:251

36.
37.

38.

39.

40.

41.

42.

43.

45.

46.
47.

48.

49.

50.

Page 10 of 10

Baxt WG. Complexity, chaos and human physiology: the justification for
non-linear neural computational analysis. Cancer Lett. 1994;77(2-3):85-93.
Scott H, Colborn K. Machine learning for predicting sepsis in-hospital
mortality: an important start. Acad Emerg Med. 2016;23(11):1307.

Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR.
Epidemiology of severe sepsis in the United States: analysis of incidence,
outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303-10.
Ding X, Gellad ZF, Mather C, Barth P, Poon EG, Newman M, Goldstein BA.
Designing risk prediction models for ambulatory no-shows across different
specialties and clinics. J Am Med Inform Assoc. 2018;25(8):924-30.
Venables WN, Ripley BD. Tree-based methods. In: Modern applied statistics
with S. New York: Springer-Verlag; 2002. p. 251-69.

Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute
kidney injury in the ICU using random forest model. Int J Med Inform. 2019;
125:55-61.

Lee H-C, Yoon H-K, Nam K, Cho Y, Kim T, Kim W, Bahk J-H. Derivation and
validation of machine learning approaches to predict acute kidney injury
after cardiac surgery. J Clin Med. 2018;7(10):322.

Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New
York: Springer-Verlag; 2001.

Roulston MS. Performance targets and the brier score. Meteorol Appl. 2007;
14(2):185-94.

Jiménez-Valverde A. Insights into the area under the receiver operating
characteristic curve (AUC) as a discrimination measure in species
distribution modelling. Glob Ecol Biogeogr. 2012;21(4):498-507.

Dietterich TG. Ensemble methods in machine learning, vol. 2000. Berlin:
Springer Berlin Heidelberg; 2000. p. 1-15.

Fang X, Wang Z, Yang J, Cai H, Yao Z, Li K, Fang Q. Clinical evaluation of
Sepsis-1 and Sepsis-3 in the ICU. Chest. 2018;153(5):1169-76.

Newgard CD, Lewis RJ, Jolly BT. Use of out-of-hospital variables to predict
severity of injury in pediatric patients involved in motor vehicle crashes.
Ann Emerg Med. 2002;39(5):481-91.

Johnson AE, Mark RG. Real-time mortality prediction in the Intensive Care
Unit. In: AMIA Annual Symposium Proceedings: 2017. Washington, D.C.:
American Medical Informatics Association; 2017. p. 994.

Caruana R, Niculescu-Mizil A. An empirical comparison of supervised
learning algorithms. In: ICML'06: Proceedings of The 23rd International
Conference on Machine Learning, vol. 2006. New York: Association for
Computing Machinery; 2006. p. 161-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Dataset and subjects
	Predictor variables and the primary outcome
	Prediction models
	SAPS II

	LR
	LASSO
	RF
	GBM

	Statistical analysis

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Declarations of interest
	Competing interest
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

