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INTRODUCTION

This paper is based on a lecture presented at the 150thmeetingof the Section for Vegetation Research of the

Royal Botanical Society of The Netherlands

This contribution presents a review of the development of the study of vegetation
dynamics since 1979, in the framework of a jubilee meeting on progress in the study of
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As follows from Table 1, some significant changes in focus of attention for different

branches of vegetation science have occurred since 1990. The statistics are based on a

sample from the journal Vegetatio covering the period 1978-87 and one from the

Journalof Vegetation Science (JVS) 1989-95. These journals have covered a great deal

of the developments in vegetation science since 1979. Each column in the table covers

c. 100 papers. Since the editorial policy of JVS has been largely the same as that

of Vegetatio in the years before 1989, the samples should be comparable. Although
there are some irregularities—which can be explained by the appearance of special
issues—several trends can be distinguished:

Table 1. Attention paid to differentbranches of vegetation science as estimated from the number

of papers published in Vegetatio 1978-87 (477) and Journalof Vegetation Science 1989-95 (330).

Figures are percentages referring to the various periods. High figures in bold. See also Van der

Maarel (1991)

vegetation. However, an exhaustive review is both impossible and unnecessary. It is

impossible within the few pages available because of the vast literature published, and

it is unnecessary because there are several review papers and textbooks available. To

start with the year 1979 itself, two important papers appeared (White 1979; Huston

1979), and a symposium on advances in vegetation science was held in Nijmegen

(Van der Maarel 1980a,b). Further publications consulted for this paper include Pickett

& White (1985), Pickett et al. (1987), Gray et al. (1987), Burrows (1990), Van Andel

et al. (1993), Glenn-Lewin et al. (1992) and Agnew et al. (1993).
In 1979 a similar special meeting was held (Werger 1979), where I contributedwith a

review-like paper on numerical methods in vegetation science. Since this important

aspect of vegetation science was not covered at this jubilee meeting, some developments
of this branch have been included here, mainly so far as they apply to vegetation

dynamics. Since I am involved in one particular branch of vegetation dynamics, i.e. gap

dynamics, extra attention will be paid to recentwork in Uppsala, perhaps at the expense

of other new developments.

1978-

1979

1980-

1982

1983-

1985

1986-

1987

1989-

1991

1992-

1993

1994-

1995

Dynamics 19 26 17 19 14 30 23

Synecology 11 11 21 20 12 17 9

Numericalmethods, models 30 21 10 12 11 4 8

Systematics, regional studies 10 8 6 2 6 2 9

Structure, pattern, life form 6 6 3 7 17 3 3

Diversity studies 10 7 5 5 4 3 5

Interaction studies, niche — 1 2 4 5 10 8

Seed bank, dispersal — — — — 3 6 5

Ecosystem ecology 5 3 2 3 2 8 5

Geography 1 1 9 2 2 2 3

Palaeoecology 2 1 1 6 2 1 2

Landscape ecology — — 1 1 1 — 1

Mapping, remote sensing 1 3 — 1 1 3 8

Autecology 1 2 6 1 2 3 5

Population ecology 2 1 5 5 7 1 1

Management 4 5 6 6 8 3 3

Vegetation science general 2 4 5 6 4 3 3
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• Interest in the development of numerical methods (including pattern analysis and

spatial modelling) has decreased.

• Interest in diversity issues was relatively high before ‘biodiversity’ became a hot issue

(Van der Maarel 1996b).
• Interest in vegetation dynamics has increased, including dynamic modelling.
• Some new branches have emerged, notably interaction and niche studies as well as

seed bank and dispersal studies; these are all related to dynamics.

This implies that a personal bias is evident in this contribution towards the above-

mentioned journals in the selection of research papers. Also, a clear bias towards

examples from Dutch and Swedish research must be admitted.

DEVELOPMENTS IN NUMERICAL VEGETATION ANALYSIS

Numerical vegetation analysis is a very useful tool in summarizing the complex relations

between species, and between species and their environment as these change during
succession. Its importance, which had become clear by the end of the 1970s, has only
increased during the 1980s and 1990s.

Generally, multivariate methods are being stabilized, although continuously dis-

cussed. Also, people have discovered that some diversity in methods is acceptable as

long as the results of each application are carefully interpreted and compared with other

results. Refinements and improvements ofmethods for multivariateanalysis have been

published. Several textbooks have appeared since 1979. In the present context it suffices

to refer to Jongman et al. (1987)—a new edition of this book (Jongman et al. 1995)
is called a ‘corrected version’; it hardly contains any new references. This book is

particularly useful for the various ordinationand constrained (floristic-environmental)
ordination techniques contained in the canoco package and for the equally popular
divisive clustering technique twinspan. Some applications and new developments will

be discussed in the next section.

Ordination

The most important extension developed is Canonical Correspondence Analysis (Ter
Braak 1986), a ‘restricted’ form ofCA, in which environmental variables are included

in the analysis so that the site scores are restricted to be a linear combination of

the environmental variables. This simply means that the main ordination axes are

determined by one or more associated species which (co-)occur only locally in the

dataset, and which vary in correlationwith the variation in environmental variable(s).
Obviously, CCA can also be used in the analysis of vegetation dynamics, by introducing
the variable ‘time’, i.e. numberof years since the beginning of a time series. One example
is the study of vegetation development along the Baltic seashore near Uppsala by
Cramer & Hytteborn (1987). The coastline is subject to a considerable post-glacial
isostatic land uplift, c. 5 mm/yr; 135 1 -m

2
permanent plots in four transects across the

shoreline were analysed in 1978 and 1984. In the detrendedvariant of the CCA, DCCA,
applied to one transect, the main axis of variation is elevation, with the plots relatively
(but not perfectly) arranged from low to high, characterized by facultative halophytes
such as Aster tripolium and Triglochin maritima at the low side of the transect and

woodland herbs such as Mercurialis perennis and Anemone nemorosa at the high side.

Axis 2 represents the variation over time, with the floristic distance between the first and
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the second analysis increasing with elevation and with the low-lying plots generally
moving to the right rather than downwards, meaning that the slight elevation all plots

were subjected to causes the strongest floristic changes in the low-lying plots. The joint

interpretation of these axes is of course primary succession, with irregularities in the

graph interpreted as the results of fluctuations.

By means of this type of ‘dynamics ordination’we can also elucidate the phenomenon
that the composition and development of any plot is very much dependent on the

composition of neighbouring plots. This is a special form of a phenomenon known as

spatial autocorrelation (see below).
As to further improvements ofCA, 0kland & Eilertsen(1994) elaborated a technique

suggested by Borcard et al. (1992) to increase the explanatory power of a CCA of a large

dataset, with many external variables included, by so-called variation partitioning. The

principle is that the external variables are divided into two groups (one group, for

instance, including temporal and large-scale spatial variables, the other group environ-
mental variables). CCA is run with one variable at a time in a groupwhilemaintaining
the variableswhich contribute significantly to the total variation. Then partial CCA was

employed whereby the significant variables in one groupwere included as covariables

and those in the other group as constraining variables.

Critical comments on CA include inaccuracies and loss of solution stability by

detrending (e.g. Knox 1989). Recently, Tausch et al. (1995) discovered instabilities in the

results of some canoco programs (with repercussions for twinspan), related to the

sequence in which the samples and species are entered.

Perhaps other ordination techniques may take over the role of CA, which would be

certainly interesting if they could be made ‘canonical’. Candidates are (1) Non-metric

Multidimensional Scaling, which was applied successfully in vegetation studies (e.g.
Oksanen 1983) and explained and promoted particularly by Minchin (1987a,b), and

(2) Fuzzy Set Ordination (Roberts 1986).

Classification

Ever since twinspan was introduced (Hill 1979), this program has often been applied.

The success of this programwas determinedby its general availability, its objectivity, its

speed and the resulting dichotomous hierarchy, which is appealing to many vegetation
scientists. Nevertheless, there are some problems with the program. Its objectivity is not

as pronounced as it seems because the program has many options, and the recom-

mended default options are not always realistic. Moreover, the dichotomy is rigid and

indicator species appear in clusters and subclusters throughout the hierarchy. The older

agglomerative cluster techniques have also been further developed (e.g. Van Tongeren
1986; Wildi 1989), including stopping rules for an optimal cluster solution (e.g. Popma
et al. 1983; Noest & Van der Maarel 1989). Interestingly, the agglomerative methods

have remainedmore popular than twinspan in vegetation classification and vegetation

dynamics.
An example of the use of cluster analysis in the description of succession is the study

by Van Noordwijk-Puijk et al. (1979) of the vegetation development on a desalinating
tidal flat in Lake Veere, southwestern Netherlands, which arose after the closing of one

of the estuaries in the area. Vegetation analyses in permanent plots from 1963-73 were

subjected to agglomerative cluster analysis; for each year the allocation of single

analyses to clusters was determinedand a transition scheme drawn. The cluster structure

was arranged in a sequence from rapid to slow desalinization. In this way one acquires
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a comprehensive picture of the amounts of constancy and change and the diversification

of the plant community structure.

More complicated transitions diagrams were constructed for the long-term succession

of a dune area, based partly on cluster analysis and partly on the interpretation of air

photographs and vegetation maps. As Van Dorp etal. (1985) and Van der Maarel et al.

(1985) have shown, the succession follows multiple pathways. Moreover, the transition

frequencies vary from year to year, while new types arise. As Van Dorp et al. remarked,
these latter characteristics make it difficult to apply Markov models to predict the

further development of the vegetation. This will be discussed below.

Pattern analysis

As to pattern analysis, two approaches are usually distinguished, one based on

presence/absence or quantitative data for species in series of small quadrats, the other

based on distances between individuals or clumps. Regarding the first approach the

textbook by Kershaw & Looney (1985) is a useful reference, and also because this book

deals with dynamic plant ecology. The essence of this approach is to calculate statistics

(usually variance) of the occurrence ofspecies in quadrat strings of increasing length and
detect deviations from random distributions at different scales. Newer variants have

been published, e.g. one based on fractal geometry (Palmer 1988) and one based

on multi-scale ordination (Ver Hoef& Glenn-Lewin 1989). See, for example, Ver Hoef

et al. (1993) and Dale & Zbigniewicz (1995). Apparently we have not reached the final

stage in the development of this approach.
The essence of the other ‘distance-based’ approach is to determine distances, and treat

these in different statistical ways. Haase (1995) presented an account of this group of

methods. Basically, one counts numbers of neighbours to individual target plants or

clumps within circles of increasing radius. This approach is obvious if, indeed, data on

individual species are available, as is the case with i.a. forest trees (e.g. Newbery et al.

1986) and desert plants (e.g. Prentice & Werger 1985). Although Ford & Renshaw

(1984) used different scales and intensities ofpattern in a spatial complex to interpret the

processes behind, very littlework on real changes has been published. Zhang & Skarpe

(1995) found in a study on pattern in the semi-arid steppe plant Artemisia halodendron

that over a few years the aggregates of shoots of this species increased in size for

the small shoots but decreased for the large shoots, which was related to grazing

intensity.
The ecological significance of pattern analysis and its appreciation as an important

tool will depend on further applications of pattern analysis in time series ofpermanent

transects or repeated measurements.

Diversity

Regarding the measurement of diversity little has happened. Most people still use the

well-known Shannon-Weaver, Simpson and equitability indices (see Magurran 1988 for

a survey), and often parallel to each other, even ifit has been clear since Hill (1973) that

these indices are very much related to each other. Moreover, the Shannon-Weaverand

Simpson indices, although meant as diversity indices, are mixed indices, taking into

account both the total numberof species in the collection under study and the evenness

amongst the proportions the different species are represented with. Van der Maarel

(1996b) demonstrated with a simple example that they in fact measure evenness rather

than species number. Clearly, alternative approaches are necessary such as those of



426 E. VAN DER MAAREL

© 1996 Royal Botanical Society of The Netherlands, Acta Bot. Neerl. 45, 421^142

Van der Maarel (1988), who distinguished between species density and dominance;

Magurran (1988) proposed the parallel use of two indices for species number and

dominance. Species density should be measured as species number per unit area or by
means of the species-area relation, either according to the species-log area ‘logarithmic
series’ model linked to Williams (1964) or the log species-log area ‘canonical lognormal’
model linked to Preston (1962). Dominance can easily be estimated as the proportion of

the most dominant species, that is the Berger-Parker index—which, incidentally was

also introduced as a diversity index. See further, La., May (1975), Magurran (1988) and

Buys (1994). Tothmeresz (1995) discussed the concept of diversity ordering through
families of diversity measures with a varying scale parameter, such as Hill’s (1973)

family. This approach is especially useful when comparing diversity levels during
succession.

Dynamic modelling

This approach is new and still in full development. Basically, dynamic models predict
the future state of a stand of vegetation or landscape element on the basis of the history
of the stand. ‘History’ can be described simply as thepresent state, meaning the present

species composition, resource levels, amount of disturbance and influx of diaspores

(Van Hulst 1992). History should of course also include the recent past, which we may

have described through permanent plot studies or repeated mapping (see above).

Finally, long-term changes, as revealedby palaeoecological studies, should be taken into

account. Van Hulst (1992) distinguished two types of models. One type he called

phenomenological, and we may call the other type mechanistic.

Well-known phenomenological models are the so-called Markov models, which were

introduced into vegetation dynamics in the 1970s (Horn 1975; Van Hulst 1979; Usher

1981; Hobbs 1983; see Usher 1992 for a review). Such models deal with the prediction
of changes on the basis of a matrix of transitionprobabilities. The presumption is that

the present state of a stand of vegetation is largely dependent on the previous state of

that stand. However, in the dune example as well as in other examples the state is also

dependent on the state of neighbouring stands. Another problem is that completely new

types arise. Still, Markov models can be useful to formalize hypotheses on the

development of a succession in relation to the mechanisms supposed to be in operation

(Van Andel et al. 1993).
Mechanistic models are based on the growth characteristics of, and interactions

between, the plant species of a plant community. They were developed to predict
the regeneration in forest gaps (Botkin et al. 1972). This model, with the acronym

jabowa (after the three authors), was succeeded by many others, including forex by
H.H. Shugart (Shugart & West 1977) and forska by I.C. Prentice (Leemans & Prentice

1987; Leemans 1989). Shugart (1992) has reviewed many of these ‘individual-based’

models. As a Dutch example of this type of modelling the extension to heathland

dynamics by Van Tongeren & Prentice (1986) may be mentioned. The model includes

general (species-independent) parameters, such as plot dimension and number of

species included, and eight species parameters for the dwarf shrubs Calluna vulgaris.
Erica tetralix and Empetrum nigrum, including rate of establishment, a growth constant,

maximum patch diameterand maximum height. The modelrefers to post-fire succession

and has a spatial component in that it is based on the yearly analysis of 1-m
2
subplots

in a 12m x 20 m plot. In this particular case Empetrum would take over.
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Clearly, the effectiveness of such simulationmodels in predicting succession is related

to the accuracy with which the model parameters have been determined. This is in its

turn dependent on the progress made in population ecology and ecophysiology of the

species involved.

TYPES OF VEGETATION DYNAMICS

Most examples of the application of multivariate methods to vegetation dynamics
mentioned above are long-term studies of primary successions, i.e. successions on

virginal substrate. This is no surprise, since primary succession received much

attention during the 1980s. Inearlier periods the emphasis was on secondary succession,

especially in the United States, and much of succession theory was in fact based on

studies of secondary succession (e.g. Odum 1969; Horn 1981), and moreover using
so-called chronosequences rather than permanent plots. The multiple pathway character

of succession exemplified above is one obvious warning against the use of such

chronosequences.

Nowadays, we have many long series of analyses of both vegetation and soil

characteristics available, which enable us to start approaching succession through

processes and mechanisms (Agnew et al. 1993). Olff (1992), having worked along the

same lines, will elaborate on this theme on this issue.

The study of gap dynamics is another major development in vegetation dynamics

during the 1980s. This is, basically, the dynamics within a largely stablecommunity. The

present contribution will give some extra attention to this type.

More generally, eight forms of vegetation dynamics can be distinguished: Fluctu-

ation, Gap dynamics, Patch dynamics, Cyclic succession, Regeneration succession,

Secondary succession, Primary succession and Secular succession (Table 2). Most of

these terms are well-known but through the presentation on this level of differentiation

and in this sequence, the suggestion arises that the different forms of vegetation

dynamics can be arranged according to the intensity and spatial extent of an

event—usually a disturbance—triggering the dynamics. Under reference to Van der

Maarel (1988) and Glenn-Lewin & Van der Maarel (1992) only a few remarks may

suffice to point to some clarifications and links.

Table 2. Relation between temporal and spatial scales of vegetation dynamics (after Van der

Maarel 1988)

Individual Patch Population Community Landscape Region

Fluctuation X X X

Gap dynamics X X X

Patch dynamics X X X

Cyclic succession X X X

Regeneration succession X X X

Secondary succession X X X X

Primary succession X X X

Secular succession X X X
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Internal community dynamics

The first five types can be considered internal dynamics.
Fluctuation is non-directional quantitative change in the components of vegetation

resulting from population responses to short-term stochastic environmental variation.

Gap dynamics results from the death of individual plants or local populations. Gaps

may be as large as 100m
2 in a forest and as small as 1 cm

2 in a short grassland, but are

always small relative to the areal extent of the community.
Patch dynamics results from the disappearance of local populations creating gaps

which are 10-100 times larger than in the previous case. Patch dynamics is the modern

follow-up of ‘pattern and process in the plant community’ (Watt 1947, 1964; Van der

Maarel 1996a).
Cyclic succession is patch dynamics with the patches having sufficient flor-

istic differentiation to approach them phytosociologically (e.g. Stoutjesdijk 1959;

Stoutjesdijk & Barkman 1992; Gimingham 1978, 1988).

Regeneration succession (see, i.a., Veblen 1992) is the recovery of an entire plant

community from a major disturbance, which can occur through natural agents such as

fire, storm or a massive insect attack, or by human agents such as burning or

clear-cutting.

Succession

The following three types of dynamics include several community types forming a

successional series.

Secondary succession is the development of a plant community upon abandoning a

human-influenced (semi-natural or agricultural) situation. In a way it is a form of

regeneration on a larger temporal and spatial scale. Studies of this type of succession

dominated the 1970s and 1980s.

Primary successions occur on newly exposed substrates, the best known examples

being dune sand (e.g. Van Dorp et al. 1985), mud flats (e.g. Roozen & Westhoff 1985),
volcanic deposits (e.g. Bjarnason 1991) and rocky, sandy or silty substrates emerging

through isostatic land upheaval (e.g. Cramer & Hytteborn 1987), or artificially created

by lowering the water table (e.g. Van Noordwijk-Puyk et al. 1979; Rydin & Borgegdrd
1988; Borgegard 1990a,b). Nowadays, this type of succession can be described more

adequately because of the long-term studies ofpermanentplots which replace the earlier

chronosequences and which are so effectively summarized by means of multivariate

analysis (as summarized above).

Compared with relatively fast secondary successions, where soil and diaspores are

available, primary succession proceeds slowly because (1) most of the diaspores have to

reach the new substrate from large distances, and (2) the substrate is deficient of

phosphate and/or nitrogen. Phosphate can be built up by microorganisms in mycorrhiza
with the higher plants (Ernst et al. 1984). Nitrogen is usually a limiting factor, and the

role of nitrogen-fixing organisms is limited (Van der Putten 1989), although species
dominating in early phases of the succession with symbiotic nitrogen fixation, such as

Hippophae rhamnoides, may add substantially to the nitrogen pool (Akkermans 1971;
Oremus 1982). Vitousek & Walker (1987). Tilman (1988) and OUT (1992) are among

those who have summarized nutrient relations during succession.

Recently it has become clear that the succession into later stages is connected to

the decline of earlier stages. Dutch work on dune succession (Van der Putten 1989;
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Van der Putten et al. 1993; De Rooij-Van der Goes et al. 1995; De Rooij-Van der Goes

1996) has indicated thatharmful soil organisms, notably nematodesand soil fungi,may
cause such decline. A related phenomenon is the die-back of several tree species in

primary successions, but this is nowascribed mainly to climatic perturbations alfecting

even-aged cohorts of trees (Mueller-Dombois 1986, 1992; Akashi & Mueller-Dombois

1995).
Secular succession concerns the long-term changes in vegetation in relation to

long-term and large-scale changes in the environment, particularly climate. Changes in

community composition are the result of changes in the geographic distributions of

individual species. Thompson (1981, 1983) and Walker et al. (1981) studied a chrono-

sequence in coastal dunes in Queensland covering more than 120 000 years, thus

including both Holocene and Pleistocene dune zones. The succession proceeds first from

open foredune communities via shrubland to tall Eucalyptus forest, but on the

Pleistocene dunes heath-like sclerophyllous shrubs dominate, which are adapted to

extremely low levels of phosphorus remaining after leaching. Walker etal. (1981) use the

term ‘retrogressive succession’ for this further development.
Another example of secular succession was described on the volcano Mauna Loa,

Hawaii by Kitayama et al. (1995), covering 9000 years. In this case ash depositions,
which increase the availability of nitrogen, cause an irregular course of the succession,
which has not yet reached a climax state.

A third example concerns the long-term changes in the primary forest Fiby near

Uppsala, for a long time consideredas a primaeval forest with small-scale dynamics and

community-level regeneration (Sernander 1936; Liu & Hytteborn 1991). Palaeoeco-

logical studies (Bradshaw & Hannon 1992; Bradshaw 1993) have made clear how this

forest has been subjected both to ‘secular’ changes, notably the immigration of Picea

abies, and to grazing for at least 2000 years with long-term fluctuations in grazing
intensity.

Restoration succession

A relatively new and deviating type of succession is the succession from degraded

vegetation towards a more natural state by means of managementmeasures (Bakker

1989). Such measures include cessation of fertilization, sod cutting (e.g. Jungerius et al.

1995), hay making (Bakker et al. 1980; Bakker 1985, 1989), and return to the original

phreatic water table (e.g. Van Diggelen et al. 1991; Grootjans et al. 1995). Such

‘restoration’ usually concerns wetland vegetation. Restoration succession is in many

ways a special type of secondary succession.

GAP AND PATCH DYNAMICS

Disturbance

Gaps arise through some form of disturbance (Pickett & White 1985; Van Andel et al.

1987; Van der Maarel 1993a), disturbance being defined here on the basis of the

definitionby Van Andel & Van den Bergh (1987): ‘Disturbanceof vegetation is a change
in the environmental conditions which interferes with the current functioning of the

vegetation’. Note that ‘interference’ may attain at least two different forms: (1) the
destruction of photosynthetic tissue—emphasized by Grime (1979), and (2) the release

of resources—emphasized by White & Pickett (1985), Tilman (1985) and others. Each
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disturbance can be described as to its kind, extent, intensity and frequency (Van Andel

& Van den Bergh 1987;Glenn-Lewin & Van der Maarel 1992; Van der Maarel 1993a).
These four dimensions of disturbance will always operate in some sort of combination

(Table 3).

Species mobility

One of the most important forms of community dynamics is gap dynamics, the

continuous response to frequent, small-scale, light disturbances. One important form of

disturbance is the deathof individual plants, or parts of plants. The arising open space

is called gap, hence gap dynamics. Gaps may vary in size from less than 1 cm
2 in short

grassland (e.g. Roxburgh et al. 1993) to more than 100m
2 in a forest. Most gaps

are rapidly recolonized by plants, either from the same species or from a few species

present before the local disturbance, or/and other species. The continuous appearance
and disappearance (‘local immigration and extinction’ in—less appropriate—-

biogeographical terms) causes species mobility and species turnover. The creation and

colonization of gaps has been known since the early work of R. Sernander, A.S. Watt

and others (Van der Maarel 1996a) and has become especially important in community

dynamics since the work on heathlands by Gimingham (e.g. 1978, 1988) and the review

paper on the regeneration niche by Grubb (1977).
The relation between pattern and process on a fine scale can be elaborated ifwe have

data available on the occurrence of plant species in permanent plots of a very small size

over a series of years. Such data are hardly available and they have not yet been used

for purposes of species mobility (Van der Maarel& Sykes 1993). Some datawill now be

presented on 40 small plots of 10 cm x 10 cm situated in two rows of 20 plots alongside

the long sides of a 2-5 m x 1 m plot in a species-rich Veronica spicata-Avenula pratensis
association in an alvar limestone grassland on Oland, Sweden. This plot is a control plot
included in a series of plots subjected to various fertilization schemes. The experiment
started in 1985 and here results from yearly observations on the 100-cm2 plots from 1986

to 1994 will be used (see Van der Maarel& Sykes 1993). The numberof species per m
2

in this community is high, although not extremely high, 30-35, but on the smaller plot
sizes record numbers ofmore than 20 per 100 cm

2
and up to 13 per 10 cm

2 have been

observed.

Species mobility can be expressed as species accumulation on small plots within the

community, i.e. the total numberof species which appeared newly inany small plot after

the starting year of a period of observation (Van der Maarel & Sykes 1993). Table 4

Examples:

Landscape level: erratic intense extensive disturbance: catastrophe; e.g. volcanic eruption.
Community level: irregular medium-size medium-intense disturbance; e.g. fire.

Patch level: regular low-intense local disturbance; e.g. hoof tramp in a grassland; windthrow in a forest.

Gap level: constant superficial microsite disturbance; e.g. death of an individual.

Table 3. Dimensions of disturbance

Extent Gap Patch Community Landscape

Frequency Often Regular Irregular Erratic

Intensity Partial Local Total Above and

above-ground above-ground above-ground below-ground
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shows the rapid species accumulation on the 100-cm2
plots. Where the average number

of species per 100 cm
2 is 13, the cumulative number after 9 years is 26. On average,

about three species disappear yearly from each small plot, and three species (re-)appear,
of which one to two species are new for the small plot.

Species mobility can also be expressed as species turnover on small subplots in the

community plot under study (e.g. Huber 1994; Partel & Zobel 1995), or in the formof

species replacement diagrams (Thorhalsdottir 1990; Herben et al. 1993b).
The spatial aspect of this mobility can be shown in simple distribution maps of

species, as shown in Fig. 1. Five main types of species behaviour are distinguished

(Van der Maarel 1996a); constant species, being present in most of the small plots in

most of the years involved; local species, present in only a few plots and usually in the

same plots; occasional species, present in only a few plots, but in different plots from

year to year; pulsating species, varying strongly in frequency from year to year; and

circulating species, present with medium frequencies in most years, but occupying new

plots all the time.

Table 5 shows how these mobility types are linked to the life forms to which we

usually assign our species. Both expected and unexpected links appear. No less than 20

species are highly mobile and they are foundin all life form types included. On the other

hand, the local species are restricted to one type, the chamaephytes, and similarly all

constant species are longer-lived hemicryptophytes.

In order to better understand the processes behind species mobility, it is highly
recommended to extend the turnover studies with the description of the demography of

individual species, particularly of the type Grubb (1990) emphasized. This is at the same

time awelcome addition to the studies of generative regeneration, including seed bank

analysis, which have already been started (see below). Herben et al. (1993b) described

different forms of spatial extension of species in a study of the fine-scale spatial

dynamics in a montane grassland.

Table 4. Numbers of species in the first halfof the 40 100-cm2
plots in

plot Getllinge A-l from 1986-95. In addition to the mean values, the

highest and lowest values recorded in each year are presented. Also,
overall mean values and cumulative species numbers are given. From
Van der Maarel (1996)

Mean Highest Lowest

1986 15 23 12

1987 14 19 10

1988 16 20 11

1989 16 19 11

1990 12 18 8

1991 15 20 9

1992 9 14 6

1993 10 15 7

1994 11 15 6

1995 13 17 8

Mean 13 16 11

Cum. no. 26 31 21
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The carousel model

The conclusion of the study of this species-rich alvar limestone grassland was presented
in the formof a phenomenological ‘carousel’ model suggesting thatmost species would

move freely around in the community, some of them with a short, others with a long
turn-around time. Work in progress (E. Van der Maarel & M.T. Sykes, submitted) will

quantify individualand community-average species mobility by comparing theobserved

species accumulation in subplots according to three theoretical mobility models: (1)
‘maximum mobility’: species are allocated into new subplots until all subplots are

occupied; (2) ‘random mobility’ where species (with the observed frequencies for the

respective years) are distributed at random over the subplots; (3) ‘minimal mobility’,
where species are not allowed to occupy new subplots unless the frequency wouldexceed

Fig. 1. Examples of occasional, local, pulsating and circulating species occurring in plotGl, Gettlinge alvar,
Oland. + =appearance; .=(above-ground) absence; ± =new appearance. From Van der Maarel (1996a).
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the total of subplots visited so far. Preliminary results show that species such as

Helianthemumoelandicumand Cerastium semidecandrum, mentionedby Van der Maarel

& Sykes (1993: Fig. 2) as examples of species with a stable pattern and a high mobility,

respectively, have accumulation values near to the minimum and random model,
respectively. Indeed, many species appear to move at random or nearly so. This is a new

way of confirming the old Gleasonian concept of the individuality of species (Gleason

1926). However, this remark is not meant to suggest any lack of community structure.

Studies such as that by Thorhalsdottir(1990) point to horizontal structure in grassland
and Roxburgh et al. (1993) found consistent height relations, i.e. a vertical structure of

the plant species occurring in a lawn.

Fig. 2. Cumulative increase in species number on 001-m
2
subplots as a function of the cumulative species

number on the 2-5 m
2
plot in grasslands on Gland: G=Gettlinge, S=Skarpa Alby, K=Kleva; in Limburg, the

Netherlands: L; and in the USA: N=North Carolina, M=Mississippi. From Sykes et at. (1994).

Table 5. Frequency of occurrence of the five mobility types in relation

to life form structure (see Van der Maarel 1988). T=therophyte;
Hb=short-lived hemicryptophyte; HI=longer-lived hemicryptophyte;
C=chamaephyte. From Van der Maarel (1996a)

C HI Hb T Tot

Occasional species 5 4 4 2 15

Pulsating species 1 2 4 7

Circulating species 2 3 5 3 13

Local species 3 3

Constant species 5 5

Total 10 13 11 9 43
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Comments on the carousel model received include the supposition that the alvar

grassland might be a particular type of community; this is true: it has a long history of
human influence (Rosen 1982), it has been continuously grazed for probably more than

2000 years, is low in stature, subject to local disturbances by grazers and, most

importantly, subject to the recurrent drought in the growing season (Rosen 1982, 1985;
Huber 1994). These droughts (see Table 3) tend to be the driving force for species change
in the community, creating gaps for new species to occupy (Grime 1990). Among these

species thereare relatively many annuals, biennials and short-lived perennials. However,

a comparative study (Sykes et al. 1994) of 001-m2 and 0-25-m2 subplots in a no longer

grazed alvar grassland, Dutch chalk grassland (Willems et al. 1993) and North

American moist, tall grass-sedge savanna grasslands (Walker & Peet 1983), the latter

having no annuals at all, showed similar high small-scale turnover and accumulation

figures for these apparently less extreme grasslands (Fig. 2).

Gap dynamics in changing communities

So far, the pattern and process approach to gap dynamics has referred to a stable

community, i.e. a community which maintains its structure and floristic composition
over a longer period of time, much longer than the patch-dynamic cycle(s). In the case

of the alvar grassland on Oland this condition seems to be fulfilled. However, gap

dynamics will also occur in communitiessubjected to some overall change, i.e. primary,

secondary, regeneration or restoration succession. As a first example, two successional

alvar communities studied by Partel & Zobel (1995) showed equally high species
mobility as two related communities considered relatively stable.

The combination of small-scale turnover (Huber 1994; Partel & Zobel 1995) and

accumulation figures should be further exploited for a better understanding of the

species dynamics. Laborious but probably rewarding further studies concern the

possibility of ‘species group’ mobility and of fixed sequences of disappearances and

appearances of species in subplots.

Species pool

One interesting consequence of the carousel model is the continuouscreation of suitable

microsites for the immigration of species, either from outside the stand or from the local

seed bank (Schmida & Ellner 1984). This led Sykes et al. (1994) to the analysis of species
accumulation of small plots as a function of the species available in the stand. This

analysis included the experimental plots in the alvar grasslands on Oland (Van der

Maarel & Sykes 1993) as well as similarly analysed plots in Dutch chalk grassland

(Willems et al. 1993) and North American moist, tall grass-sedge savanna grassland

(Walker & Peet 1983), which were all included in a comparative experimental analysis
of coexistence in species-rich grasslands (Peet et al. 1990). As Fig. 2 shows, there is a

significant relation between the two parameters.
This relation could be considered as a first indication of the importance of the species

pool, defined as a set of species around a target stand ofvegetation from which the stand

can be supplied, and discussed by Zobel (1992) and Eriksson (1993). Then, Partel et al.

(1996) distinguished between the actual species pool, the set of species present in a plant
community (including the transient diaspore bank) and the regional species pool, the set

of species occurring in a region which is capable of coexisting in a target community. In

this case the region was Estonia and the regional species pools of 14 Estonian plant



DYNAMICAL VEGETATION SCIENCE 435

© 1996 Royal Botanical Society of The Netherlands, Acta Bot. Neerl. 45, 421 -442

communities, including grasslands, bogs, heathlands and forests, were determined on

the basis of the ecological similarities between species according to their Ellenberg
indicatorvalues (Ellenberg et al. 1991). As Figs 3 and 4 show, the actual species richness

on a small area, i.e. 1 m
2
,
is related to the size of the actual species pool of the

community, and this pool is dependent on the size of the regional species pool.

Fig. 3. Relation between actual species pool and mean species richness on 1 m
2
in 14 Estonian plant

community types, ranging from dry pine forest (3) and raised bog (7) via nemoral mixed forest (11) to dry
alvar heath (2) and species-rich alvar grassland (1, 14). From Partel el al. (1996).

Fig. 4. Relation between regional and actual species pool in the same Estonian plant community types
as in Fig. 3. From Partel el al. (1996).
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For many communities it remains to be investigated which role the local seed bank

plays in the process of immigration. Much detailed information is available on the

seed bank and the germination of limestone grassland species (e.g. Rusch 1993; Rusch

& Van der Maarel 1992) and on germination conditions in a similar type of grassland

(Ryser 1993). From these studies we know how often gaps arise in limestone grassland
and how important regeneration by seedlings is. Not only all the annuals, making up

15-20% of the local species assemblage in the limestone grassland studied by Rusch,
but also many perennials, up to 50%, regenerate frequently by seed (Rusch &

Femandez-Palacios 1995).

IMPLICATIONS OF GAP AND PATCH DYNAMICS FOR

VEGETATION TYPOLOGY AND ECOLOGY

It seems that the significance of internal vegetation dynamics is not limited to certain

types of grassland. At least three consequences for vegetation typology arise, which may
be of general interest and should be elaborated in vegetation science.

Syntaxonomy of patches

Patches distinguished within the community from a ‘pattern and process’ point of view

are phytosociologically evaluated in different ways, depending on the level of complexity
of the community under study. In grasslands and heathlands the various patches and

phases are usually considered as intrinsic parts of an association; they do not receive a

separate syntaxonomical status. In the case of bog regeneration complexes certain

phases are distinguished as own associations, usually within the same higher syntaxon,

notably the class Oxycocco-Sphagnetea, or within two classes, the former one and the

Scheuchzerietea. In forests, however, early and late gap-colonizing phases are recog-

nized as different associations assigned to different classes, e.g. the gap pioneer class

Epilobietea and the gap shrubland alliance Sambuco-Salicion capreae in the class

Rhamno-Prunetea, as regeneration stages in the forest, the mature phase of which is

considered an association belonging to the forest class Querco-Fagetea. Ecologically,

however, these syntaxa are patches within the same complex community. This is a

conceptual problem that has not yet been solved in phytosociology.

Representative area

If, indeed, species turnover within a plant community is high, and species will move

around in the carousel, several species characteristic of the community willbe missed in

any analysis of a smaller stand. Some of these species may even be character species.
From the many formal descriptions of plant community types as syntaxa in the

Braun-Blanquet system (see, e.g., Westholf & Van der Maarel 1978) we know that

character species need not occur frequently and/or with high cover-abundance. The

consequence of the carousel model for vegetation typology is that the minimum area

concept has to be revised (Van der Maarel 1993b). Since this concept has always been

disputed and the method for determining it discussed repeatedly (e.g. Dietvorst et al.

1982), itmay be good to abandon this concept. The two alternatives for a more realistic

analysis would be: (1) the formal releve should be made in a stand as large as possible;
and (2) the releve should be repeated over a series of years and a ‘cumulative releve’

should be built up as a basis for the typology. As far as I could check—but statistics are
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missing here—releves used to be larger in the early days of phytosociology. Releves of

100m
2 in a grassland were usual, for example. Later, such large releves were considered

suspicious because they might refer to heterogeneous stands. Consequently, releves were

chosen smaller and smaller. With the advantage that the stand analysed will be

homogeneous, but with the disadvantage the species list will be incomplete. Since itwill

normally be impractical to repeatedly return to a sample plot, it seems that we have to

return to the classical approach and analyse stands as large as possible. Van der Maarel

(1966) once coined the term ‘maximum area’, suggested to determine the largest

homogeneous area on which a community type is represented, but this idea has never

been taken up. Van der Maarel (1993b) suggested the ‘representative area’ rather than

the minimum area.

Interestingly, JJ. Barkman (personal communication) distinguished between an

analytical minimum area, i.e. the area necessary to obtain a representative description
of the community, and the ‘regeneration minimum area’, i.e. (my words) the area

a community needs to develop all regeneration patches included in the internal

dynamics of the community. This concept could be reconsidered in the light of the

foregoing.

Plant community carousel

Kazmierczak et al. (1995) found that the variation in community types in kettle-holes

in central Poland could hardly be related to the variation in environmental factors

included in the study. They assumed a chance occurrence of species, which appear and

disappear in these sites which are often subjected to processes of disturbance such as

strong fluctuations in water level, including periods ofwater stress, and eutrophication

pulses from intensive agriculture surrounding the kettle-holes. These depressions may

provide a small number of broad habitat types, within each of which several species

may form short-lived plant communities. Well-represented classes are Bidentetea,

Chenopodietea and Plantaginetea, which consist of therophytes and short-lived

perennials. There were also many communities from the Phragmitetea present; the

dominantspecies are known as longer-lived perennials, but apparently they are short-

lived in these kettle-holes. Repeated analysis of sample plots (which is ongoing in

this particular case) is necessary to test the hypothesis of a ‘carousel’ of plant
communities.

Community theory

Patch dynamics, in the wider sense developed from the original ideas of A.S.Watt, must

be assumed to be a characteristic of each plant community. In terms of the debate on

the nature of the plant community, still being referred to as the controversy between

Gleason and Clements, the ‘individualistic behaviour’ of plant species applies very well

to the small-scale dynamics and as such it is a reinforcement of the Gleasonian idea.

However, this aspect of theplant community may be simply a response to the stochastic

external fluctuations acting upon the community. At the same time, the growing

knowledge about fine-scale competition and exclusion on the one hand and about

mycorrhiza and dependent relations on the other hand, points to the Clementsian, or

rather Wattian concept of the community as a working mechanism. Facilitation

and inhibition aspects of species replacement should also be subjected to further

experimental studies.
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