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Abstract.
semantics for general logic programs (with negation by
default) extended with explicit negation, subsuming
well founded semantics [22].

The Well Founded semantics for extended logic
programs (WFSX) is expressible by a default the-
ory semantics we have devised [11].
ship improves the cross—fertilization between logic pro-
grams and default theories, since we generalize previ-
ous results concerning their relationship [3, 4, 7, 1, 2],
and there is an increasing use of logic programming
with explicit negation for nonmonotonic reasoning
[7, 15, 16, 13, 23]. It also clarifies the meaning of logic
programs combining both explicit negation and nega-
tion by default. In particular, it shows that explicit
negation corresponds exactly to classical negation in
the default theory, and elucidates the use of rules in

The aim of this paper is to provide a

This relation-

logic programs. Like defaults, rules are unidirectional,
so their contrapositives are not implicit; the rule con-
nective, «, is not material implication, but has rather
the flavour of an inference rule, like defaults.

It is worth noting that existing top—down pro-
cedures for well-founded semantics without explicit
negation [24, 14] can be easily adapted to the seman-
tics we are proposing for extended programs. This
issue is only briefly considered here and will be the
subject of a forthcoming report.

1 Introduction

Our WFSX semantics follows from one basic ”coher-
ence” requirement: =L implies ~L (if L is explicitly
false, L must be false) for any literal L. Once that
is built into the very definition of interpretation, the
rest ensues by adapting to that requirement the formal
techniques used for defining WFS (cf. [17]).

Example 1 Consider P = {a «~b; b —~a; —a «}.

If =a were to be simply considered as a new atom
symbol, say, a', and WFS used to define the seman-
tics of P (as suggested in [18]), the result would be
{=a, ~=b}, so that —a is true and « is undefined. We

insist that ~a should hold because —a does. Accord-
ingly, the WFSX of P is {—a,b, ~a, ~=b}, since b fol-
lows from ~a.

Example 2 The program {-a —~b; a} has no se-
mantics since any model is contradictory.

Example 3 We sustain the semantics of the program
{g—10b, q b} is {~q,~b,~=g ~=b}, so that g
is false. We argue that b V —b is not even part of
the language of rules, let alone a rule, so ¢ should
not be concluded; also, that ' «' is not material im-
plication, and that the corresponding default theory
({I’T’7 _'l’q’ },{}) does not conclude ¢ as well.

Our stance is that if the law of excluded middle
is desired of some atom then it should be explicitly
stated for it, not necessarily for all. We have yet to
enlarge our language for rules to accomodate such ex-
pressiveness, and subsequently to perhaps extended
default rules to allow = (as in [8]).

Another semantics extending well founded seman-
tics for extended logic programs is presented in [5].
It differs from ours in that it does not comply with
the coherence principle. This is easily seen with an
example.

Counsider program P of example 1. PU{} is a com-
plete admissible scenario in their sense, and so the
semantics of P is {—a}, violating the principle.

Another important difference is in what concerns
contradiction. Their semantics exercises some con-
tradiction removal, giving thus meaning to more pro-
grams. To the program of example 2 it assigns the
semantics is {a}, leaving b undefined. We consider the
issue of contradiction removal a separate one and we
treat it, differently, elsewhere in the spirit of [9, 10].

2 Language Used

Given a first order language Lang [17], an ex-
tended logic program is a set of rules of the

form H « By,...,By,~ Cq,...,~ Chy,

where



H, By,...,B,,Cy,...,Cp are classical literals. A
(syntactically) classical literal (or explicit literal) is
either an atom A or its explicit negation —A. We
also use the symbol = to denote complementary liter-
als in the sense of explicit negation. Thus =—=A4 = A.
The symbol ~ stands for negation by default'. ~L is
called a default literal. Literals are either classical or
default literals. A set of rules stands for all its ground
instances wrt Lang.

3 A Semantics for Programs with Ex-
plicit Negation

In this section we define the Well Founded Semantics
for programs with explicit negation, in line with the
approach of the introduction. We present properties
of this semantics, and illustrate with examples. For
all proofs the reader is refered to the extended version
of this paper [12]

We begin by providing a definition of interpretation
for programs with explicit negation.

Definition 3.1 (Interpretation) By an interpreta-
tion I of a language Lang we mean any set TU ~F 2,
where T and F are disjoint subsets of classical literals
over the Herbrand base, and if =L € T then L € F
(coherence)®. The set T contains all ground classical
literals true tn I, the set F' contains all ground classt-
cal literals false in I. The truth value of the remaining
classical literals is undefined (The truth value of a de-
fault literal ~L is the 3-valued complement of L ).

Proposition 3.1 (Noncontradiction condition)
If I = TU ~F s an interpretation of a program P
then there s no pair of classical literals A, = A of P

such that A €T and ~A€T.

As before, an interpretation can be equivalently
viewed as a function I : Lit — V where Lit is the set of
all classical literals in the language and V = {0, 3,1}

Based on this function we can define a truth valua-
tion of formulae.

1This designation has been used in the literature instead
of the more operational “negation as failure (to prove)”.
Its precise meaning, and relation to default theories cor-
responding to logic programs, is the object of this pa-
per; at this stage, however, “default” can be envisaged as
just a conventional name. Another appropriate designa-
tion is "emplicit negation”, in contradistinction to explicit
negation.

2By ~{a1,...,a,} we mean {~a,..

3For any literal L, if L is explicitly false L must be
false. Note that the complementary condition ”if L € I’
then =L € F” is implicit.
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Definition 3.2 (Truth valuation) If I is an inter-
pretation, the truth valuation I corresponding to I is a
Junction I : C — V where C s the set of all formulae
of the language, recursively defined as follows:

e if L is a classical literal then I(L) = I(L).

o I(~L)y=1—1I(L).

o I((S,V)) = min(I(S),I[(V)).

e I[(L —S)=141(S)<I(L) or [(~L) =1 and

I(S) # 1; and 0 otherwise.

The additional condition with respect to WFS,
I(~L) = 1 and I(S) # 1, does not affect the valu-
ation of formulae without —. Its purpose is to allow a
conclusion ¢ to be false when the premises are unde-
fined for some rule, on condition that —c holds.

Definition 3.3 (Model) An interpretation I s
called a model of a program P iff for every ground
instance of a program rule H — B, I(H «— B) = 1.

As in [17] we expand our language by adding to
it the proposition u such that every interpretation I
satisfies I(u) = 15 By a non-negative program we also
mean a program whose premises are either classical
literals or u.

Definition 3.4 (Least-operator)
We define least(P), where P is a non-negative pro-
gram, as the set of literals TU ~F obtained as follows:
o Let P' be the non-negative program obtained by
replacing in P every negative classical literal =L
by a new atomic symbol, say '=_L'.

o Let T'U ~F' be the least 3-valued model of P'.

o TU ~F is obtained from T'U ~F' by reversing the
replacements above.

The generalization of Kowalski-Van Emden theo-
rem made in [17] is also valid for extended logic of
programs.

Theorem 3.1 least(P)
non-negative program P.

uniquely exists for every

We next extend with an additional rule the P mod-
ulo I transformation of [17], itself an extension of the
Gelfond-Lifschitz modulo transformation.

Definition 3.5 (£ transformation) Let P be an
extended logic program and let I be an interpretation.
By 1E we mean a program obtgined from P by perform-
ing the following four operations:
e Remove from P all rules containing a megative
premise L =~A such that A € 1.



e Remove from P all rules containing a premise L

such that =L € I.

e Remove from all remaining rules of P their neg-
ative premises L =~A such that ~A € I.

e Replace all the remaining negative premises by
proposition u.

Note that the new operation (the second one) is
not applicable to nonextended programs. (The need
for this operation arises from the coherence principle,
and is illustrated below in this section.)

The resulting program 15 is by definition non-
negative. Thus by theorem 3.1 it always has a unique
least(£).

l(i(l.‘it(?) isn’t always an interpretation. Conditions
about noncontradiction and coherence may be vio-
lated. To avoid incoherence, when contradiction is
not present, we define the partial operator:

Definition 3.6 (Coh operator) Let I = TU~F be
a set of literals such that T does not contain any pair
A, A We define Coh(I) = IU~{~L| L €T}. Coh
18 not defined for other sets of literals.

The result of Coh applied to least( ?) is always an
interpretation. The noncontradiction and coherence
conditions are guaranteed by definition. T and the
false part (F U{-L| L € T}) are disjoint because T
and F' are disjoint and none of the classical literals
added to the false part are in T since T is noncontra-
dictory.

Now we generalize the I'* operator of [17].

Definition 3.7 (The ® operator) Let P be a logic
program and I an interpretation, and let J =
least(£). If Coh(J) emists we define ®p(l) =
Coh(J). Otherwise ®p(I) is not defined.

Definition 3.8 (WFS with explicit negation)
An interpretation I of an extended logic program P
is called an Ertended Stable Model (XSM) of P iff
Op(I) = I. The F-least Extended Stable Model s
called the Well Founded Model. The semantics of P
s determaned by the set of all XSMs of P.

It is easy to see that some programs may have no
semantics (cf. example 2).

Definition 3.9 (Contradictory program) An es-
tended logic program P is contradictory iff it has no
semantics, t.e. there exists no interpretation I such

that ®p(I) = I.

Theorem 3.5 below expresses an alternative, more
illustrative definition of contradictory program.

Example 4 Counsider again the program of example
1. Now {—a, ~=b} is no longer a XSM as in [18], be-
cause it is not an interpretation, and thus ® does not
apply to it. Its only XSM, and consequently its WFM,
is I = {—a,b, ~a, ~—b}. % ={b—, -a <}, itsleast

model is I, Coh(I) = I, and thus ®p(Il) = 1.

Remark 3.1 According to [18] the above program has
the two XSMs, {—a,~=b} and {-a,b, ~a,~—b}. It is
not enough to throw out those not complying with co-
herence. Although that’s true for this exzample, ezam-
ple 6 shows that 1s not in general the case.

We now come back to the question of the need for
the extra operation introduced in the modulo opera-
tor.

Example 5 Consider P = {¢ — a; a «— b; b —~
b; —a}. Its only XSM is I = {-a, ~a, ~c, ~=b, ~—ch.
In fact: £ = {=a, a—b, be—u}, least(L) =

{—a, ~c, ~=b, ~=c} and consequently ®(I) = I. Note
that if the new operation for the modulo transforma-
P
T
¢ would be undefined rather than false. This would

be against the coherence principle, since —a implies
~a, and as the only rule for ¢ has a in the body, it
should also imply ~c. The role of the new operation
is to eusure the propagation of false as a result of any
~L implied by a =L through coherence.

tion were absent - would contain the rule ¢ « «a, and

Example 6 Consider P = {¢ «—~b; b —~a; a —~

a; —b}. Its only XSM is M = {=b, ¢, ~b, ~—c, ~mal.

Indeed: % = {ce—, b—u, a—u, -b<}, its
least model is {c, b, ~—¢,~a}, and consequently
dp(M) = M*. By simply considering =b as a new

atom this program would have a single XSM, {-b},
which is not a coherent interpretation.

It is also interesting to see in this example that M is
not a model in the usual sense because for the second
rule of P the value of the head (M(b) = 0) is smaller
than the value of the body (M(~a) = 1).

The intuitive idea is that the truth of —b overrides
any rule for b with undefined body, so that ~b becomes
true (and b false), rather than undefined.

Theorem 3.2 (XSMs are models) Every XSM I
of a program P is a model of P (cf. definition 3.3).

In the above definition of the semantics (definition
3.8) we define the WFM as the F-least XSM. This is
possible because:

4Note how the truth of —b compels the truth of ~b via
the C'oh operator.



Theorem 3.3 (Existence of the semantics)
For noncontradictory programs there always ewvists a

unique F-least XSM.

Theorem 3.4 (Monotonicity of ®) Let P be a
noncontradictory program. Then the operator ®p
s momnotonic wrt the F-ordering, i.e. A C B =
®p(A) C ®p(B) for any interpretations A and B.

Definition 3.10 In order to obtain a constructive
bottom—up® definition of the WFM of a given noncon-
tradictory program P, we define the following transfi-
nite sequence {I,} of interpretations of P:

L = {}
In+1 = (I)P(Io)
Is = U {I.|a < é} foralimit ordinal &

By theorem 8.4, and according to the properties of
monotonic operators, there must exist a smallest A

such that Iy 1s a fizpoint of ®p, and WFM = I,.

This constructive definition requires one to know
a preore if the given program is contradictory. This
requirement is not needed if we consider the following
theorem.

Theorem 3.5 A program P is contradictory uff for
the sequence of the I there exists a X such that ®p (1))
1s not defined, i.e. l(:asf,(%) has a pair of classical
literals A, —A.

Thus, in order to compute the WFM of a program P
one starts by building the above sequence. If at some
step ®p is not applicable then we end our iteration
and say that P is contradictory. Otherwise we iterate
until the least fixpoint of ®p, which is the WFM of
P.

It is worth noting that this semantics is a general-
ization of the stationary semantics (or extended sta-
ble model semantics) [18, 19, 20], to programs with
explicit negation.

Theorem 3.6 For programs without explicit negation
our semantics coincide with stationary semantics.

5Top down procedures computing this semantics (for
noncontradictory programs) can be easily obtained by
adapting existing procedures for programs without explicit
negation, such as [14], as follows: replace every literal of
the form —A by a new literal, say A’; include two new rules
"~ A rewrites to A and "~A' rewrites to A. If A and A’
are both derivable then the program is contradictory.

4 Relation between the Semantics of
Default Theories and Logic Pro-
grams with Explicit Negation

A relationship between logic programs and default
theories were first proposed in [3] and [4]. The idea is
to translate every program rule into a default rule and
then compare extensions of the default theory with the
semantics of the corresponding program.

In [4], stable model semantics [6] was shown equiva-
lent to a special case of default theories in the sense of
Reiter [21]. This result was generalized in [7] to pro-
grams with explicit negation and answer-set seman-
tics, where they claim that explicit negation is in fact
the classical negation used in default theories.

[1] extends Reiter’s semantics of default theories,
resolving some issues of the latter, namely that some
theories have no extension and that some theories have
no least extension. This is achieved by iterating twice
Reiter’s I' operator. Recently, in [2], the well founded
semantics for programs without explicit negation was
shown equivalent to a special case of the extension
classes of default theories in the sense of [1]. It turns
out that in attempting to extend this last result to ex-
tended logic programs we get some unintuitive results.

These problems are addressed in [11]. There a new
semantics for defaults is defined. This semantics is
similar to the one in [1], but uses semi-normal defaults
in the inner step. A brief description of this semantics
follows.

Definition 4.1 (The ) operator) Let A be a de-
fault theory and E a context. We define Q(E) as
I\ (T« (E)), where A® is the default theory obtained
from A by transforming every default rule into semi-
normal, and I is obtained from T by not making any
deductive closure.

Definition 4.2 (Q-extension) A context E is a -
extension of a default theory A iff E = Q(E), E C
I'\<(E), and E 1is consistent.

Now we present the equivalence of ()—extensions and
XSMs of extended logic programs.

Definition 4.3 Let A = (D,{}) be a default the-
We say that an extended logic program P
rresponds to A iff for every default of the for
""" a"}(i,{bl""’bm} € A there exists a rule ¢ —
,~=by, € P, where b; denotes the

A1yeeny Uy, by,
complement of —b;.

Definition 4.4 An interpretation I of o program P
corresponds to a context E of the corresponding default
theory T iff for every classical literal L of P (and lit-
eral L of T'):



e (L)=1if L€ E and L € T'x.(E).
o I(L)=1Liff L¢E and L € Tx.(E).
e (L)=0if LEE and L ¢ T'x.(E).

The main theorem relating both semantics is now
presented as follows:

Theorem 4.1 (Correspondence) Let A = (D, {})
be a default theory corresponding to the program P. E
18 a Q-extenston of A iff the interpretation I corre-

sponding to E 1s o XSM of P.

According to this theorem we can say that explicit
negation is nothing but classical negation in default
theories. As € default semantics is a generalization of
I default semantics [12], and since answer-sets seman-
tics correspond to I' default semantics [7], it turns out
that answer-sets semantics (and hence the semantics
defined in [23]) are special cases of our semantics.
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