
1 

Wisdom of Crowds Cluster Ensemble 

Hosein Alizadeh
1
, Muhammad Yousefnezhad

2
 and Behrouz Minaei Bidgoli

3
 

 

Abstract: The Wisdom of Crowds is a phenomenon described in social science that suggests four 

criteria applicable to groups of people. It is claimed that, if these criteria are satisfied, then the 

aggregate decisions made by a group will often be better than those of its individual members. 

Inspired by this concept, we present a novel feedback framework for the cluster ensemble 

problem, which we call Wisdom of Crowds Cluster Ensemble (WOCCE). Although many 

conventional cluster ensemble methods focusing on diversity have recently been proposed, 

WOCCE analyzes the conditions necessary for a crowd to exhibit this collective wisdom. These 

include decentralization criteria for generating primary results, independence criteria for the base 

algorithms, and diversity criteria for the ensemble members. We suggest appropriate procedures 

for evaluating these measures, and propose a new measure to assess the diversity. We evaluate the 

performance of WOCCE against some other traditional base algorithms as well as state-of-the-art 

ensemble methods. The results demonstrate the efficiency of WOCCE’s aggregate decision-

making compared to other algorithms. 

Keywords: Ensemble Cluster, Wisdom of Crowds, Diversity, Independence. 

1. Introduction 

Clustering, one of the main tasks of data mining, is used to group non-labeled data 

to find meaningful patterns. Generally, different models provide predictions with 

different accuracy rates. Thus, it would be more efficient to develop a number of 

models using, different data subsets, or utilizing differing conditions within the 

modeling methodology of choice, to achieve better results. However, selecting the 

best model is not necessarily the ideal choice because potentially valuable 

information may be wasted by discarding the results of less-successful models 

(Perrone and Cooper, 1993; Tumer and Ghosh, 1996; Baker and Ellison, 2008). 
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This leads to the concept of combining, where the outputs (individual predictions) 

of several models are pooled to make a better decision (collective prediction) 

(Tumer and Ghosh, 1996; Baker and Ellison, 2008). Research in the Clustering 

Combination field has shown that these pooled outputs have more strength, 

novelty, stability, and flexibility than the results provided by individual algorithms 

(Strehl and Ghosh, 2002; Topchy et al., 2003; Fred and Lourenco, 2008; Ayad 

and Kamel, 2008).  

In the classic cluster ensemble selection methods, a consensus metric is used to 

audit the basic results in cluster ensemble selection and use them to produce the 

final result. There are two problems in the traditional methods; firstly, although 

the final result is always in accordance with the selected metrics providing the 

optimized result, there might be other metrics by which a better final result can be 

generated. Secondly, In order to produce the final result, there is neither any 

information from other entities of cluster ensemble except auditing basic results 

and nor that any evaluation of information and errors in other entities can be 

presented. In order to solve the mentioned problems, this paper proposes wised 

clustering (WOCCE) as a viable solution. This method audits all entities of cluster 

ensemble and the errors in result from each entity optimized by information 

obtained from other entities which dramatically reduces the possibility of any 

errors to occur in complex data as the result.  

In the social science arena, there is a corresponding research field known as the 

Wisdom of Crowds, after the book by the same name (Surowiecki, 2004), simply 

claiming that the Wisdom of Crowds (WOC) is the phenomenon whereby 

decisions made by aggregating the information of groups usually have better 

results than those made by any single group member. The book presents 

numerous case studies and anecdotes to illustrate its argument, and touches on 

several fields, in particular economy and psychology. Surowiecki justifies his own 

theory, stating that: “If you ask a large enough groups of diverse and independent 

people to make a prediction or estimate a probability, the average of those 

answers, will cancel out errors in individual estimation. Each person’s guess, you 

might say, has two components: information and errors. Subtract the errors, and 

you’re left with the information” (Surowiecki, 2004). 

In spite of the lack of a well-defined agreement on metrics in cluster ensembles, 

Surowiecki suggested a clear structure for building a wise crowd. Supported by 
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many examples from businesses, economies, societies, and nations, he argued that 

a wise crowd must satisfy four conditions, namely: diversity, independence, 

decentralization, and an aggregation mechanism. The goal of this paper is to use 

the WOC in order to choose a proper subset in a cluster ensemble. Whereas 

Surowiecki’s definition of the WOC emphasizes on social problems, and the 

decision elements embedded in his definitions are personal opinions. This paper 

proposes a mapping between cluster ensemble literature and the WOC 

phenomenon. According to this mapping, a new WOC Cluster Ensemble 

(WOCCE) framework, which employs the WOC definition of well-organized 

crowds, is proposed. Experimental results on a number of datasets show that in 

comparison with similar cluster ensemble methods, WOCCE improves the final 

results more efficiently.  

In summary, the main contributions of this paper are: 

• A new framework for generating a cluster ensemble from basic (primary) 

clustering results with feedback-mechanism. WOCCE controls the quality of 

the ensemble using this mechanism. 

• A new mapping between the WOC observation (an approach to social 

problems) and the cluster ensemble problem (one of the main fields in data 

mining). This allows us to apply the definitions of a wise crowd to any cluster 

ensemble arena. 

• A new heuristic method for measuring independence according to the wise 

crowd definitions. 

• A new diversity metric called A3, which is based on the Alizadeh–Parvin–

Moshki–Minaei (APMM) criterion Alizadeh et al. (2011, 2014). A3 measures 

the diversity of a partition with respect to a reference set (an ensemble).  

 

The rest of this paper is organized as follows: Section 2 reviews some relevant 

literature. In Section 3, we propose our new framework, and demonstrate the 

results of a comparison against traditional methods in Section 4. Finally, we 

present our conclusion in Section 5. 
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2. Literature review 

2.1. Cluster Ensemble 

In unsupervised learning methods, cluster ensemble has demonstrated that better 

final result can be achieved by combining basic results instead of choosing only 

the best one. This has led to the idea of an ensemble in machine learning, where 

the component models (also known as members) are redundant in that each 

provides a solution to the same task, even though this solution may be obtained by 

different means (Grofman and Owen, 1996; Baker and Ellison, 2008). 

Generally, a cluster ensemble has two important steps (Jain et al., 1999; Strehl and 

Ghosh, 2002): 

1- Generating different results from primary clustering methods using 

different algorithms and changing the number of partitions. This step is 

called generating diversity or variety. 

2- Aggregating mechanisms for combining primary results and generating the 

final ensemble. This step is performed by consensus functions 

(aggregating algorithms). 

It is clear that an ensemble with a set of identical models cannot provide any 

advantages. Thus, the aim is to combine models that predict different outcomes, 

and there are four parameters -dataset, clustering algorithms, evaluation metrics, 

and combine methods- that can be changed to achieve this goal. A set of models 

can be created from two approaches: choice of data representation, and choice of 

clustering algorithms or algorithmic parameters. There are many consensus 

functions in the cluster ensemble for combining the basic results. While some of 

them use graph partitioners (Strehl and Ghosh 2002; Fern and Brodley 2004) or 

cumulative voting (Tumer et al. 2008; Ayad and Kamel 2008), others are based on 

co-association among base partitions (Greene et al. 2004; Fred and Jain 2005).  

Halkidi et al (2001) proposed the compactness and the separation to measure the 

quality of clustering. Strehl and Ghosh (2002) proposed the Mutual Information 

(MI) metric for measuring the consistency of data partitions; Fred and Jain (2005) 

proposed Normalized Mutual Information (NMI), which is independent of cluster 

size. This metric can be used to evaluate clusters and the partition in many 

applications. For example, while Zhong and Ghosh (2005) used NMI for 

evaluating clusters in document clustering, (Kandylas et al., 2008) used it for 
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community knowledge analysis and (Long et al, 2010) used it for evaluating 

graph clustering. Hadjitodorov et al (2006) proposed a selective strategy which is 

based on diversity. Zhou and Tan (2006) proposed an algorithm which is based on 

selective voting. Yi et al (2009) used resampling-based selective clustering 

ensembles. Fern and Lin (2008) developed a method that effectively uses a 

selection of the basic partitions to participate in the ensemble, and consequently in 

the final decision. They also employed the Sum NMI and Pairwise NMI as quality 

and diversity metrics, respectively, between partitions. Azimi and Fern (2009) 

proposed adaptive cluster ensemble selection. Limin et al (2012) used 

compactness and separation for choosing the reference partition in the cluster 

ensemble selection. They also used new diversity and quality metrics as a 

selective strategy. Jia et al (2012) used SIM for diversity measurement. SIM is 

calculated based on the NMI. Alizadeh et al. (2011, 2012 and 2014) have explored 

the disadvantages of NMI as a symmetric criterion. They used the APMM and 

MAX metrics to measure diversity and stability, respectively, and suggested a 

new method for building a co-association matrix from a subset of base cluster 

results. This paper uses A3 for diversity measurement which works base on the 

APMM measure. Additionally, we use the co-association matrix construction 

scheme of Alizadeh et al. (2011 and 2014). A3 and the co-association matrix are 

discussed in detail in Sections 3.1 and 3.4, respectively. 

2.2. The Wisdom of Crowds 

The Wisdom of Crowds (Surowiecki, 2004) presents numerous case studies, 

primarily in economics and psychology, to illustrate how the prediction 

performance of a crowd is better than that of its individual members. The book 

relates to diverse collections of independent individuals, rather than crowd 

psychology as traditionally understood. Its central thesis, that a diverse collection 

of individuals making independent decisions is likely to make certain types of 

decisions and predictions better than individuals or even experts, draws many 

parallels with statistical sampling, but there is little overt discussion of statistics in 

the book. Mackey (Mackey 1841) mentions that not every crowd is wise. These 

key criteria separate wise crowds from irrational ones (Surowiecki, 2004): 
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Diversity of opinion: Each person has private information, even if it is only an 

eccentric interpretation of the known facts. 

Independence: People’s opinions are not determined by the opinions of those 

around them. 

Decentralization: People are able to specialize and draw on local knowledge. 

Aggregation: Some mechanism exists for turning private judgments into a 

collective decision. 

It is important to note that, under some conditions, the cooperation of the crowd 

will fail because of the consciousness of its members about each other’s opinion. 

This will lead them to conform rather than think differently. Although each 

member of the crowd may attain greater knowledge and intelligence by this effect, 

definitely the whole crowd as a whole will become trapped into less unwise 

(Mackey, 1841; Page, 2007; Hadzikadic and Sun, 2010). 

In recent years, the WOC has been used in the field of machine learning. Steyvers 

et al. (2009) used WOC for recollecting order information, and Miller et al. (2009) 

proposed an approach to the rank ordering problem. Welinder et al. (2010) used a 

multidimensional WOC method to estimate the underlying value (e.g., the class) 

of each image from (noisy) annotations provided by multiple annotators. WOC 

has also been applied to underwater mine classification with imperfect labels 

(Williams, 2010) and minimum spanning tree problems (Yi et al., 2010). Finally, 

Baker and Ellison (2008) proposed a method for using the WOC in ensembles and 

modules in environmental modeling. 

3. The WOCCE approach  

Surowiecki (2004) has outlined the conditions that are necessary for the crowd to 

be wise: diversity, independence, and a particular kind of decentralization. To 

map the WOC to a cluster ensemble, we should restate the wise crowd 

requirements for the corresponding field. This section discusses these 

preconditions in detail for the area of clustering. It seems that the best matching 

between individuals and their opinions in WOC is base clustering algorithms and 

partitions, respectively, in the context of cluster ensembles. The goal of WOCCE, 

as illustrated in Figure (1), is to construct a wise crowd in the primary partition via 

a recursive procedure. 
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Fig. 1.The WOCCE framework 

3.1. Diversity of Opinions 

To define the diversity of opinion in cluster ensembles, which utilize base 

partitions, we use the term diversity of base partitions. According to this 

assumption, and Surowiecki’s definition of diversity of opinion, it should be 

rephrased as: 

If the result of a base clustering algorithm has less similarity value than a defined 

threshold in comparison with other partitions existing in the ensemble, it is 

eligible to be added to the ensemble. 

Similarity and repetition of specific answers can be controlled by tracing errors. 

This paper proposes a new method based on APMM in order to evaluate the 

diversity of each primary cluster algorithm. This paper uses Average APMM, or 

AAPMM, to calculate the diversity of a cluster, because this method decreases the 

time complexity compared to NMI and avoids the symmetry problem. To 

calculate the similarity of cluster C with respect to a set of partitions P in the 

reference set contacting M partitions, we use equation (1) (Alizadeh et al., 2011): 
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In equation (2), 
c
n , p

i
n , and n are the size of cluster C, the size of the i-th cluster 

of partition p, and the number of samples available in the partition including C, 

respectively.kp is the number of clusters in partition P. In order to measure the 

similarity of a whole partition, this paper proposes averaging AAPMM over all of 

the clusters that exist in a specific partition. We call this average measure A3. In 

other words, A3 is a weighted average of the AAPMMs of one partition’s clusters: 

∑
=

×=
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CAAPMMn

n
PA
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1

)(3            (3) 

In equation (3), Ci is the i-th cluster in partition p, and Ci has size
i
n . n is the 

number of members in partition p and k is the number of clusters in the partition. 

A3 measures information between a partition and those partitions in a reference 

set. In fact, it counts the repetition of clusters in the corresponding set. Therefore, 

A3 measures the similarity of a partition with respect to a set. As it is normalized 

between zero and one, we use 1 – A3 to represent the diversity: 

)(31)( PAPDiversity −=                  (4) 

According to the above definitions, one of the conditions for appending a partition 

to the crowd (known as the diversity condition) is: 

dTPDiversity ≥)(                     (5) 

The threshold value for diversity is 10 ≤≤ dT . Equation (5) means that if the 

diversity of a generated partition with respect to a set of partitions, which we call 

them the 'crowds' in this paper, satisfies the minimum threshold of dT (diversity 

threshold), it will be added to the crowd.  

3.2. Independence of Opinions 

According to Surowiecki’s definition, independence means that an opinion must 

not be influenced by an individual or certain group. By mapping this to cluster 

ensembles, we have the following definition: 

The decision making mechanism of each base clustering algorithm must be 

different. In the case of using similar algorithms, the basic parameters that 

determine their final decisions must be sufficiently different. 

In other words, a new partition generated by a primary clustering algorithm is 

independent if and only if it satisfies the following conditions: 
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1) Every two partitions that are generated by different methods are independent 

because their algorithm’s mechanisms are different. 

2) Every two partitions that are generated by the same method with different 

basic parameters are independent. 

This suggests that the independence of the results generated by a single algorithm 

should be investigated by checking the basic parameters. As most of the base 

algorithms are quite sensitive to their initial conditions, we propose a system of 

initialization checking to ensure that independent results are generated by each 

algorithm. The procedure Basic-Partition-Independence (BPI) illustrated in Figure 

(2) has been developed to calculate the independence of two partitions.  

 

Function BPI (P1, P2) Return Result 

               If (Algorithm-Type (P1) == Algorithm-Type (P2) then 

                              Result = 1 - Likeness (Basic-Parameter (P1), Basic-Parameter (P2)) 

               Else 

                              Result = 1 

               End if 

End Function 

Fig. 2.Measuring the degree of independence between two clusters 

 

In Figure (2), P1 and P2 are base partitions, the Algorithm-Type function returns 

the type of base algorithm that created those partitions, and the Basic-Parameter 

function returns the basic parameters of the algorithm that generated the partition 

(for example, the seed points of Kmeans). These values can be defined according 

to two factors: the nature of the problem and the type of base algorithms. This 

paper proposes a heuristic function (Likeness) for measuring a cluster’s 

independence. In order to calculate the Likeness, we assume that MATA and 

MATB matrices contain the basic parameters of partitions PA and PB, respectively. 

LMATt is the distance (similarity) matrix of MATA and MATB. LMAT0 is a 

nn×  matrix in which n is the number of basic parameters in the algorithm, e.g. 

the number of clusters in Kmeans (because the basic parameters of Kmeans give a 

matrix of k seed points). LMATt contains the distances (we use a Euclidean 

metric to calculate distance) between each pair of observations in the mx-by-n 

data matrix MATA and my-by-n data matrix MATB. Rows of MATA and MATB 

correspond to observations, columns correspond to variables. LMATt is an mx-

by-my matrix, with the (i, j) entry equal to distance between observation i in 

MATA and observation j in MATB. Simt is minimum value in LMATt matrix. By 

removing the row and the column that contain Simt, we generate LMATt+1. This 
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procedure of removing rows and columns should be repeated until LMAT reaches 

the size 0×0. As an example, Figure (3) shows how LMATx matrices and Simx 

values are calculated by using MATA and MATB matrices. 

 

 

Fig. 3.The calculations of LMAT and Sim  

 

Equation (6) explains the Likeness function. MaxDis is the maximum value in the 

LMAT0 matrix in Equation (6) and Figure (3). 
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The independence of each partition is calculated as follows: 
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Where M refers to the number of members in the crowd and BPI function is 

calculated by Figure (2) pseudo code. Thus, according to the above definitions, 

one of the conditions for entering the result of a clustering into the crowd is given 

by equation (8), which we call the independence condition and where the 

threshold value for Independence is 10 ≤≤ iT .   

iTCceIndependen ≥)(        (8) 

Based on the above definition of "Independence", this metric is not diversity 

metric, mainly because diversity metrics are used for evaluating the basic 

clustering results. Whereas independence metric controls the process of producing 

basic results; it is done by managing effective parameters in basic clustering 

algorithm. In addition, independency can calculate the probability of accuracy for 

similar patterns. Look at the example illustrated in Figure (4):  
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Fig. 4.The differences between Diversity and Independence 

 

In this figure, Alg1 and Alg2 generate random results. As the figure shows, 

although the diversity is nearly zero, both algorithms' results are acceptable in 

comparison with the real class of dataset. Since in unsupervised learning, the real 

class of dataset cannot be used in the evaluation of basic algorithms' results, 

classic ensemble methods cannot accept the same results in ensemble committee. 

This paper solves this problem by proposes the Independence for predicting the 

probability of accuracy in primary (basic) algorithm results. According to the 

numeric value of the metric for two specific algorithms, if similar patterns are 

recognized by these two algorithms, the degree of accuracy can be identified for 

the pattern generated by them based on the definition of independence. 

Furthermore, while the independence metric analyses probability of correctness in 

patterns, it cannot guarantee the diversity of the final result, instead only trying to 

improve it. Needless to say, this paper does not intend to substitute "independence 

metric" with "diversity metric", rather incorporating the independence metric as a 

supplement to the diversity metric. 

In WOCCE, the issue of algorithm's independency is considered for the first time. 

Independency generates repeated results in a particular redundant algorithms and 

ensures that the similar results are created by those algorithms with acceptable 

degree of independency. For this reason, the number of selected initial results in 

WOCCE is much smaller than the other methods. In section 4.3 of this paper, the 

study on the effect of Independence metric on the performance and runtime in 

final result will be presented. 

3.3. Decentralization of Opinions 

Surowiecki explains the necessary conditions for generating a wise crowd as 

follows (Surowiecki, 2004): “If you set a crowd of self-interested, independent 
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people to work in a decentralized way on the same problem, instead of trying to 

direct their efforts from the top down, their collective solution is likely to be better 

than any other solution you could come up with.”  

According to Surowiecki’s explanation of decentralization and his examples on 

the CIA and Linux, it can be inferred that decentralization is a quality metric. The 

WOC cluster should be implemented such that decentralization is established 

across all of its parts. According to the above, we define decentralization in a 

cluster ensemble as follows: 

The primary (basic) algorithm must not be influenced by any mechanism or 

predefined parameters; in this way, each base algorithm has a chance to reveal a 

‘very good result’ with its own customization and local knowledge. 

In the above definition, a very 'goodresult' is one that has good performance, as 

well as enough diversity and independence to be added to the crowd. We propose 

two approaches; decentralization in basic results and feedback mechanism, for 

satisfying the notions which were defined in this paper. While decentralization in 

basic results satisfies decentralization conditions such as localization for basic 

algorithms and their input datasets, feedback mechanism tries to control 

decentralization conditions in ensemble components and saves the quality of 

results in all components. 

3.3.1. Decentralization in basic results 

This paper considers the following conditions when designing a cluster ensemble 

mechanism, in order to retain decentralization: 

1- The number of primary algorithms participating in the crowd should be 

greater than one. 

2- The method of entering a primary algorithm into the crowd should ensure 

that the final results will not be affected by its errors. In other words, the 

decision making of the final ensemble should not be centralized. 

3- The threshold parameter cT, which we call the coefficient of 

decentralization, is a coefficient which is multiplied in the number of 

clusters. Every base algorithm clusters the dataset into at most cT×k 

clusters. i.e. it clusters the dataset into a number of clusters between cT to 

cT×k. 
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In the above definition, the coefficient cT is a member of natural numbers (N). 

This coefficient can improve accuracy in the final result when the dataset has 

especial complexities and basic algorithms cannot recognize the patterns in 

dataset. It decreases the complexities of dataset by increasing the number of 

clusters in basic clustering algorithms (Tan et al, 2005) and changes the complex 

patterns in dataset to smaller patterns which are easier to recognize by any 

algorithms (especially center-base-clustering algorithms). Instead of finding a 

complex solution for complex problems, this method turns the complex problems 

into smaller problems and then tries to solve them. For example, solving the Non-

globular shape datasets by using center-base-clustering algorithms, such as 

Kmeans, can be named as one of the applications of this method. Figure (5) shows 

the result, achieved by applying this method on Half-Ring dataset. 

 

 

Fig. 5.Effect of decentralization in complex dataset 

 

Figure (5) part (a) shows the original classes in Half-Ring dataset. Figure (5) part 

(b) shows the result of Kmeans algorithm when k=2 (k is equal to the original 

number of dataset classes). As part (b) shows, the Kmeans cannot solve this 

problem because it includes center-base objective function. By using this method 

and assuming that cT=5 (k=5x2), the Half-ring dataset complexities turn to simple 

patterns, as shown in part (c). These patterns can be recognized by k-means easily. 

In section 4.3 of this paper, the study on the effects of decentralization metric on 

the performance of final result will be presented. 

From the above discussion, it is clear that decentralization checking should be 

performed during the generation of the base results. In other words, we try to 

satisfy the decentralization conditions in the first phase, while producing the base 

partitions. Therefore, unlike diversity and independence, there is no evaluation of 

decentralization during the assessment of the initial partitions. 
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3.3.2. Feedback Mechanism 

By using feedback mechanism, our proposed method increases the number of 

selected results gradually. This method evaluates the basic algorithm result by 

using independence and diversity metrics after generating a result. If the result is 

accepted, it will be added to the selected set. If not, it is automatically removed. 

This procedure repeats itself for the next algorithm to the end. It is interesting to 

note that in this method, the values and their qualities do not change after 

selecting results, because the values are updated after every modification in each 

period, and that the number of selected results does not change at the end of this 

procedure. 

Whereas in previous cluster ensemble methods, all basic clustering results had 

been calculated before the results were evaluated by the selected metric (e.g. 

NMI) and the best basic clustering results were selected by the use of thresholds. 

Figure (6) shows this mechanism. Although values of selected metric in our 

selection, in the results of basic algorithm, are maximum, this cannot guarantee 

that, in respect to one and others, the obtained values remain constant after being 

entered into our selection because the number of members in selected results 

changed consequently. Thus, the quality of evaluations may decrease after 

selecting results.  

 

 

Fig. 6.Effect of selecting clustering in previous cluster ensemble methods on NMI values 
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3.4. Aggregation Mechanism 

In this step, the opinions in the wise crowd are combined to reach a final 

consensus partition. In some of clustering method, the consensus partition uses a

nn× co-association matrix that counts the number of groupings in the same 

cluster for all data points. In these methods, the primary clustering results are first 

used to construct the co-association matrix. The most prominent of these methods 

is EAC
4
 (Fred and Jain, 2005). Each entry in the co-association matrix is 

computed as: 

ji

ji

m

n
jiC

,

,
),( =  (9) 

Where 
ji

m
,

is the number of partitions in which this pair of objects is 

simultaneously present and 
ji

n
,

counts the number of clusters shared by objects 

with indices i and j. WOCCE uses the co-association matrix to aggregate the 

results. Then employs the Average-Linkage algorithm to derive the final partition 

from this matrix. Figure (7) shows this process: 

 

 

Fig. 7.Evidence Accumulation Clustering 

 

In Figure (7), the selected basic results, which in this paper is called the crowds, 

are created by basic (primary) clustering algorithms and selected by evaluation 

metrics. Then, the co-association matrix is generated based on basic results. After 

that, the dendrogram is created by using linkage algorithms on co-association 

matrix (Fred and Jain, 2005; Fern and Lin, 2008; Alizadeh et al, 2011; Alizadeh et 

al 2012; Alizadeh et al 2014). This paper uses Average Linkage for generating 

dendrogram because it has high performance in comparison with other 

hierarchical methods in EAC (Fred and Jain, 2005; Tan et al, 2005).  At last, the 

final result is created based on clusters' number in WOCCE.  

                                                

4
 Evidence Accumulation Clustering 
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3.5. Summing up 

In WOCCE, the process starts with an evaluation of the diversity and 

independence of the partitions which it is shown in Figure (1). As stated earlier, 

the necessary decentralization conditions are satisfied in the cluster generation 

phase by constructing the base partitions. Therefore, there is no component for 

assessing the decentralization of the generated partitions. In the WOCCE 

framework, only the decentralized partitions that pass both the independence and 

diversity filters are eligible to join the wise crowd. 

In summary, the differences between these two approaches are: 

1- The method of evaluating the clustering algorithm. In the WOCCE 

approach, the diversity and independence of each primary algorithm is 

compared with other algorithms in the crowd after execution. If they have 

the necessary conditions, they are added to the crowd. 

2- Most importantly, in the WOCCE approach, each primary clustering can 

be inserted into the crowd without affecting other algorithms’ results. This 

approach can detect errors and identify information in the results (by 

checking the diversity and independence values), and then compensate for 

these errors with true information from all the results in the crowd, 

guaranteeing that the errors will not be spread to other members (by 

changing the total diversity and independence values in each step). 

3- In the WOCCE approach, the selection and measurement of independence 

and diversity are performed in one step. This cause the independence and 

diversity values to be retained in the final ensemble. 

Function WOCCE (Dataset, Kb, iT, dT, cT) Return [Result, nCrowd] 

nCrowd = 0; 

While we have base cluster 

    [idx, Basic-Parameter] = Generate-Basic-Algorithm (Dataset, Kb*cT) 

    If (Independent (Basic-Parameter) > iT)  

        If (Diversity (idx) >dT) 

            Insert idx to Crowd-Partitions 

            Crowd = Crowd + 1 

        End if 

    End if 

End while  

Co-Acc = Make-Correlation-Matrix (Crowd-Partition) 

Z = Average-Linkage (Co-Acc) 

Result = Cluster (Z, Kb) 

Fig. 8.Pseudo code for the WOCCE framework 
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Figure (8) shows the pseudo code for the WOCCE procedure. In Figure (8), Kb is 

the number of clusters given by the base algorithm. The Generate-Basic-

Algorithm function builds the partitions of base clusters (primary results), Make-

Correlation-Matrix builds the co-association matrix according to equation (9), and 

the Linkage and Cluster functions build the final ensemble in accordance with the 

Average Linkage method. The parameter Result is our final ensemble, and 

nCrowd is the number of members in the crowd. 

There are two major problems in classic cluster ensemble selection methods; 

firstly, although the final result is always providing the optimized result in 

accordance with the selected metrics, there could be other metrics to use for 

generating the best final result. Secondly, it is possible that all aspects and 

specifications of data are not considered or not seen for precise auditing, because 

in traditional cluster ensemble selection methods, only the basic results are 

analyzed (including the correct data as well as errors). Thus, it is necessary to pay 

more attention on other contractive entities in each cluster ensemble algorithm.  

Unlike traditional methods, wise clustering uses a structural perspective for 

generating the best result based on all aspects and specifications of data which 

operates based on the "The Wisdom of Crowds" theory. The framework of 

WOCCE includes the four main conditions: Independency of algorithms, diversity 

of initial (basic) results, decentralization of framework's structure for preserving  

the quality of final result, and method of feedback combination for safeguarding 

the auditing results of partitions in the wise crowd (initial results for 

combination). This structure makes WOCCE a flexible technique and capable of 

being programed, so that by altering the value of thresholds, It can be adjusted for 

any data (will be discus in section 4.3).  

Furthermore, in WOCCE method all needed information from clustering problems 

is gathered by controlling all entities within cluster ensemble as the result errors 

in each entity is optimized by information from other entities which consequently 

reduces the possibility of occurrence of errors in complex data dramatically.  

Table (1) presents a brief mapping between terminologies in WOC and the 

corresponding cluster ensemble area. 
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Table1.Mapping between WOC and cluster ensemble terminologies 

WOC Terminology Cluster Ensemble Terminology 

Primary opinion Primary partition 

People Base or Primary algorithm 

Wise crowd Basic or Primary clustering results 

Diversity of Opinion Diversity of primary clustering results 

Opinion independence Independence of clustering algorithms that 

generate primary partitions  

Decentralization Decentralization in cluster generation 

 

4. Evaluation 

This section describes a series of empirical studies and reports their results. In real 

world, unsupervised methods are used to find meaningful patterns in non-labeled 

datasets such as web documents. Since the real dataset doesn’t have class labels, 

there is no direct evaluation method for evaluating the performance in 

unsupervised methods. Like many pervious researches (Fred and Jain, 2005; Fern 

and Lin, 2008; Alizadeh et al, 2011; Alizadeh et al 2012; Alizadeh et al 2014), 

this paper compares the performance of its proposed method with other basic and 

ensemble methods by using standard datasets and their real classes. Although this 

evaluation cannot guarantee that the proposed method generate high performance 

for all datasets in comparison with other methods, it can be considered as an 

example for analyzing the probability of predicting good results in the WOCCE. 

4.1. Datasets 

The proposed method is examined over 14 different standard datasets. We have 

chosen datasets that are as diverse as possible in their numbers of true classes, 

features, and samples, as this variety better validates the results obtained. Brief 

information about these datasets is listed in Table (2). More information is 

available in Newman et al. (1998) and Alizadeh et al. (2012). The features of the 

datasets marked with an asterisk are normalized to a mean of 0 and variance of 1, 

i.e. )1,0(N . 
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Table2.Information about the datasets used in our simulations 

Name Feature Class Sample 

Half Ring 2 2 400 

Iris 4 3 150 

Balance Scale
* 

4 3 625 

Breast Cancer
* 

9 2 683 

Bupa
* 

6 2 345 

Galaxy
* 

4 7 323 

Glass
* 

9 6 214 

Ionosphere
*
 34 2 351 

SA Heart
*
 9 2 462 

Wine
* 

13 2 178 

Yeast
*
 8 10 1484 

Pendigits
5
 16 10 10992 

Statlog 36 7 6435 

Optdigits
6
 62 10 5620 

 

 

4.2. Experimental Method for Calculating Thresholds 

This paper proposes an experimental method for determining the threshold values 

iT, dT, and cT. First, we check the relationships between the thresholds and 

WOCCE factors: 

• iT has a relation with the number of base clustering algorithms, the variety of 

base clustering algorithm types, and the runtime of WOCCE. 

• dT has a relation with the variety of base clustering algorithm types, the 

decentralization threshold (cT), and the number of partitions in the crowd. 

• cT has a relation with the number of data in the dataset, the number of 

features in the dataset, and the number of partitions in the clustering. 

 

In this paper, cT is chosen based on the dataset specification such as number of 

features and samples. Also, all thresholds are chosen such that each WOCCE 

algorithm’s runtime is approximately 30 min on a PC with certain specifications
7
. 

  

                                                

5
 Pen-based recognition of handwritten digits data set 

6
 Optical recognition of handwritten digits data set 

7
 CPU = Intel X9775 (4*3.2 GHz), RAM = 16 GB, OS = Windows Server 2012 RTM x64 
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4.3. Results 

The algorithms in Table (3) were used to generate the wise crowd:   

 
Table3. List of base algorithms used in WOCCE 

No. Algorithm Name 

1 K-Means 

2 Fuzzy C-Means 

3 Median K-Flats 

4 Gaussian Mixture 

5 Subtract Clustering 

6 Single-Linkage Euclidean 

7 Single-Linkage Hamming 

8 Single-Linkage Cosine 

9 Average-Linkage Euclidean 

10 Average-Linkage Hamming 

11 Average-Linkage Cosine 

12 Complete-Linkage Euclidean 

13 Complete-Linkage Hamming 

14 Complete-Linkage Cosine 

15 Ward-Linkage Euclidean 

16 Ward-Linkage Hamming 

17 Ward-Linkage Cosine 

18 Spectral clustering using a sparse similarity matrix 

19 Spectral clustering using Nystrom method with orthogonalization 

20 Spectral clustering using Nystrom method without orthogonalization 

 

We used MATLAB R2012a (7.14.0.739) in order to generate our experimental 

results. The distances were measured by a Euclidean metric. All results are 

reported as the average of 10 independent runs of the algorithm. The final 

clustering performance was evaluated by re-labeling between obtained clusters 

and the ground truth labels and then counting the percentage of correctly 

classified samples. The WOCCE results are compared with well-known base 

algorithms including Kmeans, Fuzzy Cmeans, Subtract Clustering, and Single-

Linkage, as well as five state-of-the-art cluster ensemble methods (EAC, MAX 

and etc.). Table (4) shows the results.  
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Table4. Experimental results 

Cluster Ensemble methods Primary methods 

WOCCE MCLA HGPA CSPA MAX EAC 
Single 

Linkage 
Subtract FCM Kmeans 

 
Result cT dT iT        
87.2 3 0.06 0.2 74.5 50 74.5 78.48 77.17 75.75 86 78 75.75 Half Ring 
96 1 0.06 0.2 89.34 48.66 85.34 72.89 96 68 55.3 82.66 65.3 Iris 

54.88 3 0.063 0.23 51.36 41.28 51.84 52.1 52 46.4 45.32 44 40.32 Balance Scale 
96.92 1 0.02 0.18 96.05 50.37 80.97 75.72 95.02 65.15 65 94.43 93.7 Breast Cancer 
57.42 3 0.04 0.21 55.36 50.72 56.23 56.17 55.18 57.68 57.97 50.1 54.49 Bupa 
35.88 2 0.05 0.2 28.48 31.27 29.41 32.78 31.95 25.07 29.72 34.98 30.03 Galaxy 
51.82 3 0.06 0.19 51.4 41.12 38.78 44.17 45.93 36.44 36.44 47.19 42.05 Glass 
70.52 3 0.1 0.3 71.22 58.4 67.8 64.48 70.48 64.38 77 67.8 69.51 Ionosphere 
68.7 1 0.8 0.65 62.54 50.93 58.42 63.96 65.19 65.15 67.26 63.41 64.51 SA Heart 

34.76 1 0.5 0.5 17.56 15.23 14 32.4 31.74 31.73 31.2 29.98 31.19 Yeast 
71.34 3 0.05 0.2 70.22 62.36 67.41 69.17 70.56 37.64 67.23 71.34 65.73 Wine 
58.68 1 0.12 0.02 58.62 11.14 58.32 57.02 10.47 10.46 10.4 36.77 46.97 Pendigits 
77.16 1 0.1 0.01 77.15 64.77 75.21 76.11 20 10.28 47.72 38.33 52.52 Optdigit 
55.77 1 0.1 0.01 55.71 52.94 54.23 54.23 23.9 23.8 23.8 49.91 50.93 Statlog 

 

In Table (4) the best results obtained for each dataset have been bolded. As 

depicted in this table, although basic clustering algorithms have shown high 

performance in some datasets, they cannot recognize true patterns in all of them. 

As this paper mentioned, basic algorithms consider an aspect (specification) of a 

dataset such as density for solving the clustering problem. The results of basic 

clustering algorithms which are depicted in Table (4) are good evidences for this 

claim. Furthermore, the CSPA and HGPA results show the effect of the 

aggregation method on improving accuracy in the final results. According to 

Table (4), the MCLA, MAX and WOCCE have generated better results in 

comparison with CSPA and HGPA. Even though WOCCE was outperformed in 

two datasets (Bupa and Ionosphere) by some algorithms, the majority of results 

demonstrate superior accuracy for the proposed method. Figure (9) shows the 

average of accuracy for each technique: 

 

 

Fig. 9.Average of accuracy for each technique 
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In Figure (9), it is difficult to separate the WOCCE and MCLA methods. 

However, the average performance over all fourteen datasets reveals that WOCCE 

outperformed MCLA by over 3%. Also, this figure shows that Single Linkage and 

EAC generate poor results in comparison with other methods. Although 

hierarchical methods such as Single Linkage can handle non-elliptical datasets 

and generate stable results, they are sensitive to noise and outliers particularly in 

complex datasets (Tan et al, 2005). Needless to say that as a classic ensemble 

method, there is no evaluation and selection in EAC. This method cannot omit 

errors which are made in the process of recognizing patterns of the basic 

clustering results by using the correct information of other basic algorithms' 

results. The results of EAC which are given in Table (4) and Figure (9) show the 

effect of evaluation and selection in cluster ensemble selection methods. Since 

some of the four conditions of the Wisdom of Crowds theory method do not exist 

in EAC, this method is a good example of unwise crowd. The effect of this 

method on final results can be seen in Table (4). Table (5) illustrates the NMI 

rates made by primary and ensemble methods: 
 

Table5. Normalized mutual information (NMI) rates 

Cluster Ensemble methods Primary methods 

WOCCE MCLA HGPA CSPA MAX EAC 
Single 

Linkage 
Subtract FCM Kmeans 

 
0.68 0.34 0 0.32 0.56 0.32 0.06 0.51 0.33 0.26 Half Ring 
0.86 0.75 0.14 0.72 0.8 0.75 0.73 0.77 0.78 0.74 Iris 
0.37 0.09 0.03 0.07 0.22 0.14 0.03 0.37 0.2 0.12 Balance Scale 
0.74 0.74 0 0.35 0.72 0.69 0.01 0.73 0.69 0.74 Breast Cancer 

0.0013 0.0016 0 0.01 0.002 0.0018 0.0136 0 0.0045 0.0008 Bupa 
0.34 0.27 0.13 0.23 0.31 0.28 0.12 0.17 0.26 0.24 Galaxy 
0.45 0.27 0.31 0.25 0.3 0.41 0.11 0.07 0.24 0.36 Glass 
0.15 0.13 0.02 0.1 0.12 0.11 0.02 0.07 0.08 0.12 Ionosphere 

0.078 0.08 0 0.02 0.08 0.07 0 0.13 0.13 0.08 SA Heart 
0.28 0.28 0.14 0.26 0.27 0.12 0.11 0 0.11 0.1 Yeast 
0.83 0.8 0.43 0.77 0.79 0.69 0.05 0.72 0.55 0.75 Wine 
0.71 0.69 0 0.68 0.7 0.01 0.01 0 0.35 0.61 Pendigits 
0.76 0.73 0.42 0.68 0.76 0.36 0.02 0.45 0.39 0.6 Optdigit 
0.56 0.56 0.42 0.47 0.54 0.01 0.01 0 0.38 0.52 Statlog 

 

In Table (5), the best result obtained for each dataset is highlighted in bold. The 

NMI evaluation shows the result's stability in each clustering technique (Fred and 

Jain, 2005; Fern and Lin 2008). As this table illustrates, most of basic clustering 

algorithms cannot generate robust results in large-scale datasets (see the last three 

datasets in the table). Even though WOCCE was outperformed in two datasets 

(Bupa and SA Heart) by some algorithms, the majority of results demonstrate 

superior NMI for the proposed method.  
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In the rest of this section, the thresholds' effects on performance and runtime are 

analyzed. In order to omit the effect of some irrelevant threshold on each 

experiment, this paper disable this irrelevant threshold by setting it to zero for 

independence and diversity thresholds and to 1 for decentralization. As mentioned 

in the previous sections, all proposed metrics in WOCCE can improve the 

accuracy when they are used at the same time. So, it is obvious that the WOCCE 

metrics cannot improve the accuracy significantly when other metrics are 

disabled.  In addition, the slope of some line charts has changed slightly, because 

the real value of that threshold is more than the given values in the experiment. 

The main goals of our experiment are to show the relation between performance 

and runtime in WOCCE and to illustrate how this paper determined the optimized 

values for each threshold.  

 

(a) (b) 

Fig. 10.The effect of Independency and Diversity on the runtime 

 

Figure (10) part (a) illustrates the relationship between iT and the runtime of 

WOCCE. This experiment was performed with 0=dT in order to remove the 

effect of diversity on the final results. The vertical axis refers to time and the 

horizontal axis refers to the independence threshold. Figure (10) part (b) illustrates 

the relationship between dT and the runtime of WOCCE. This experiment was 

performed with 0=iT in order to remove the effect of independence on the final 

results. The vertical axis refers to time and the horizontal axis refers to the 

diversity threshold. 
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(a) (b) 

Fig. 11.The effect of Independency and Diversity on the WOCCE performance 

 

Figure (11) part (a) and Figure (11) part (b) illustrate the relationship between the 

performance of WOCCE, which is based on the number of correctly classified 

samples, and independence and diversity thresholds, respectively. To plot Figure 

(11) part (a), a fixed value was assigned to dT in order to measure the effect of 

independence in the final results. In Figure (11) part (a), the vertical axis refers to 

the performance and the horizontal axis refers to the independence. In Figure (11) 

part (b), iT was fixed in order to plot performance with respect to diversity. 

Figure (12) illustrates the relationship between the performance of WOCCE, 

based on the number of correctly classified samples, and the decentralization. To 

plot Figure (12), the number of clusters in basic clustering results varies between 

k (original number of dataset classes) to 5×k (cT = 5). 

 

 

Fig. 12. Relation between decentralization and performance 

 

These figures show that the performance increased with the respective threshold 

value. They illustrate the effect of independence and diversity and decentralization 

in the performance of our cluster ensemble, and confirm that, along with diversity, 
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the independence is an important factor that should be considered when creating 

the ensemble.  

WOCCE is the first system to date that adds three conditions of diversity in basic 

results, algorithms' independence, and decentralization in datasets and ensemble 

components, to the cluster ensemble field. Although we have not presented a 

mathematical proof to support our method, the experimental results confirm its 

superior performance with respect to other cluster ensemble methods for most of 

the benchmark datasets. 

5. Conclusion 

In this paper, the WOC phenomenon was mapped to the cluster ensemble 

problem. The primary advantage of this mapping was the addition of two new 

aspects, the independence and decentralization, as well as a new framework to 

investigate them. Until now, common cluster ensemble methods have 

concentrated on the diversity of the primary partitions. Inspired by the WOC 

research in the social sciences, this paper introduced the conditions of 

independence and decentralization to the field of cluster ensemble research. The 

proposed WOCCE framework uses a feedback procedure to investigate all three 

conditions, yielding a wise crowd incorporating decentralization, independence, 

and diversity.  

Similar to other pioneering ideas, the WOCCE framework can be improved later. 

This paper suggested employing as different as base algorithm to satisfy the 

decentralization condition. We also proposed a procedure to assess the 

independence of the base algorithms, and introduced the A3 criterion to measure 

the diversity of the partitions. Our suggestions for satisfying the corresponding 

conditions will be investigated further in future work. The main drawback of the 

WOCCE algorithm is that it has three threshold parameters that must be set to 

appropriate values. This parameterization can be considered as another area for 

future work. 

  



26 

References 

Alizadeh H., Minaei-Bidgoli B. and Parvin H., (2014), Cluster Ensemble Selection Based on a 

New Cluster Stability Measure, Intelligent Data Analysis, IOS Press, ISI Expanded, in press, will 

be appeared in Vol 18(3). 

Alizadeh H., Parvin H. and Parvin S., (2012), "A Framework for Cluster Ensemble Based on a 

Max Metric as Cluster Evaluator".International Journal of Computer Science (IAENG), pp.1-39. 

Alizadeh, H., Minae, i.M. and Parvin, H., (2011), "A New Asymmetric Criterion for Cluster 

Validation", In: the 16th Iberoamerican Congress conference on Progress in Pattern Recognition, 

Image Analysis, Computer Vision, and Applications (CIARP'11); 15-18 November 201; Berlin, 

Germany: Springer-Verlag Berlin Heidelberg. pp. 320-330. 

Ayad H.G. and Kamel M.S., (2008), "Cumulative Voting Consensus Method for Partitions with a 

Variable Number of Clusters". IEEE Trans. On Pattern Analysis and Machine Intelligence, 30(1), 

pp.160-73. 

Azimi J. and Fern X., (2009), "Adaptive Cluster Ensemble Selection", In Proceedings of 

International Joint Conference on Artificial Intelligence, IJCAI, pp. 993-997. 

Baker, L. and Ellison D., (2008), "The wisdom of crowds — ensembles and modules in 

environmental modeling", Geoderma, 147, pp.1-7. 

Fern X. and Brodley C.E. (2004), "Solving cluster ensemble problems by bipartite graph 

partitioning", In: Proceedings of ICML’04, New York, NY, USA, pp. 36. 

Fern X. and Lin W. (2008), "Cluster Ensemble Selection", In: SIAM International Conference on 

Data Mining (SDM'08); 24-26 April 2008; Atlanta, Georgia, USA: SIAM; pp. 128-141. 

Fred A. and Lourenco A., (2008), Cluster Ensemble Methods: from Single Clusterings to 

Combined Solutions. Studies in Computational Intelligence (SCI), 126, pp.3-30. 

Fred, A. and Jain, A.K., (2005), "Combining Multiple Clusterings Using Evidence Accumulation". 

IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(6):835–850. 

Greene D., Tsymbal A., Bolshakova N. and Cunningham P., (2004), "Ensemble clustering in 

medical diagnostics", In: CBMS ’04: proceedings of the 17th IEEE symposium on computer-based 

medical systems, IEEE Computer Society, Washington, DC, USA, pp. 576–581 

Grofman, B. and Owen, G., (1996), "Information Pooling and Group Decision Making". 

Proceedings of the Second University of California, Irvine Conference on Political Economy. JAI 

Press, Inc., Greenwich, Connecticut. 

Halkidi M., Batistakis Y. and Vazirgiann1s M., (2001), "On clustering Validation techniques", 

Intelligent Information Systems, vol.14, pp. 107-145. 

Hadjitodorov S., Kuncheva L.I. and Todorova L.P., (2006), "Moderate Diversity for Better Cluster 

Ensembles", Information Fusion Journal, vol. 7, pp. 264-75. 

Hadzikadic M. and Sun M., (2010), "Wisdom of Crowds in the Prisoner's Dilemma Context", 

Presented at Advances in Machine Learning II, pp.110-18. 

Jain A., Murty M. N. and Flynn P., (1999), "Data clustering: A review". ACM Computing 

Surveys.31 (3), pp.264-323. 



27 

Jia J., Xiao X. and Liu B., (2012), "Similarity-based Spectral Clustering Ensemble Selection", 9th 

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Sichuan, 29-31 

May, pp. 1071-1074, ISBN: 978-1-4673-0025-4. 

Kandylas V., Upham S. P. & Ungar L. H., (2008), "Finding cohesive clusters for analyzing 

knowledge communities", Knowledge and Information Systems, 17:335–354. 

Limin L. and Xiaoping F., (2012), "A New Selective Clustering Ensemble Algorithm", 9th IEEE 

International Conference on e-Business Engineering, Hangzhou, China, 09-11 September, ISBN: 

978-1-4673-2601-8. 

Long B., Zhang Z. & Yu P. S., (2010), "A general framework for relation graph clustering", 

Knowledge and Information Systems, 24:393–413. 

Mackey C., (1841), "Extraordinary Popular Delusions and the Madness of Crowds". ISBN: 978-

1897597323. 

Miller, B., Hemmer, P., Steyvers, M. and Lee, M. D., (2009), "The Wisdom of Crowds in Rank 

Ordering Problems". In: 9th International Conference on Cognitive Modeling (ICCM'09); 24-26 

July 2009; Manchester, UK: IEEE. pp. 86-91. 

Newman, C.B.D.J., Hettich, S. and Merz, C., (1998), UCI repository of machine learning 

databases. [Online] Available at: http://www.ics.uci.edu/~mlearn/MLSummary.html. 

Page, S.E., (2007), "The difference: How the power of diversity creates better groups, firms, 

schools, and societies". Princeton, NJ, USA: Princeton University Press, 2007, ISBN: 

9780691128382. 

Perrone, M.P. and Cooper, L.N., (1993), "When networks disagree: Ensemble method for neural 

for Hybrid Neural Networks", BROWN UNIV PROVIDENCE RI INST FOR BRAIN AND 

NEURAL SYSTEMS 1993; 126-14. 

Steyvers, M., Lee, M., Miller, B. and Hemmer, P., (2009), "The Wisdom of Crowds in the 

Recollection of Order Information". Advances in Neural Information Processing Systems, 22, 

pp.1785-93. 

Strehl A. and Ghosh J., (2002), "Cluster ensembles - a knowledge reuse framework for combining 

multiple partitions". Journal of Machine Learning Research, 3, pp.583-617. 

Surowiecki, J., (2004), "The Wisdom of Crowds: Why the many are smarter than the few and how 

collective wisdom shapes business, economies, societies and nations". Brown, Little, 2004, ISBN: 

0-316-86173-1. 

Tan P. N., Steinbach M. & Kumar V., (2005), "Introduction to Data Mining", Addison-Wesley 

Longman Publishing Co., Inc. Boston, MA, USA, ISBN:0321321367 

Topchy, A., Jain, A.K. & Punch, W.F., (2003), "Combining Multiple Weak Clusterings". In: IEEE 

International Conference on Data Mining (ICDM'03); 19-22 September 2003; Melbourne, Florida, 

USA: IEEE. pp. 331-338. 

Tumer, K. and Ghosh, J., (1996), "Error correlation and error reduction in ensemble classifiers 

Connection Science". Special issue on combining artificial neural networks: ensemble approaches, 

8(3&4), pp.385-402. 

Tumer K. and Agogino A.K., (2008), "Ensemble clustering with voting active clusters", Pattern 

RecognL, vol. 29(14), pp. 1947–1953. 



28 

Welinder, P., Branson, S., Belongie, S. &Perona, P., (2010), "The Multidimensional Wisdom of 

Crowds". In: 24th Conference on Neural Information Processing Systems (NIPS); 6-9 December 

2010; Vancouver, British Columbia, Canada: Curran Associates, Inc. pp. 1-9. 

Williams, D. P., (2010), "Underwater Mine Classification with Imperfect Labels". In: 20th 

International Conference on Pattern Recognition; August 2010; Istanbul, Turkey. pp. 4157-4161. 

Yi Hong, Sam Kwong, Hanli Wang and Qingsheng Ren, (2009), "Resampling based selective 

clustering ensembles", Pattern Recognition Letters, vol.30, p 298-305. 

Yi, S. K. M., Steyvers, M. & Lee M. D., (2010), "Wisdom of the Crowds in Minimum Spanning 

Tree Problems". In: 32nd Annual Conference of the Cognitive Science Society; 10-13 August 

2010; Austin, TX, USA: Cognitive Science Society. pp. 31840-31845. 

Zhong S. & Ghosh J., (2005), "Generative model-based document clustering: a comparative 

study", Knowledge and Information Systems, 8: 374-384. 

Zhou Z.H. and Tang W., (2006), "Clusterer ensemble", Knowledge-Based Systems, vol. 19, pp. 

77-83. 

 


