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The zebrafish larva stands out as an emergent model organism for translational studies
involving gene or drug screening thanks to its size, genetics, and permeability. At the

larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although
phenotyping behavior is a key component of large-scale screens, it has not yet been

automated in this model system. We developed ZebraZoom, a program to automatically

track larvae and identify maneuvers for many animals performing discrete movements.
Our program detects each episodic movement and extracts large-scale statistics on motor

patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to

identify motor defects induced by a glycinergic receptor antagonist. The analysis of the
blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using

multiclass supervised machine learning, ZebraZoom categorized all episodes of movement
for each larva into one of three possible maneuvers: slow forward swim, routine turn, and

escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers

that four independent experimenters unanimously identified. For all maneuvers in the data
set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled

the series of maneuvers performed by larvae as Markov chains and observed that

larvae often repeated the same maneuvers within a group. When analyzing subsequent
maneuvers performed by different larvae, we found that larva–larva interactions occurred

as series of escapes. Overall, ZebraZoom reached the level of precision found in
manual analysis but accomplished tasks in a high-throughput format necessary for large

screens.

Keywords: machine learning, tracking, analysis of kinematics, collective behavior, support vector machine

classifier, multiclass categorization, locomotion in intact behaving animals

A central question in systems neuroscience is how neural cir-

cuit assembly and function relate to animal behavior. Genetic

screens in invertebrate models, such as Drosophila melanogaster

and Caenorhabditis elegans have begun to unravel the genetic

basis of circuit function and behavior (Chalfie et al., 1985; Moore

et al., 1998; Scholz et al., 2000). Automated methods have recently

been developed in these species to track the position of individ-

uals alone or in a group (Branson et al., 2009; Swierczek et al.,

2011) and to categorize behavior (Dankert et al., 2009; Kabra

et al., 2013). The zebrafish has emerged as an important verte-

brate model organism for developmental biology, neurobiology,

and human disease models, and is now used as a genetic model

organism for the study of the mechanisms modulating complex

behaviors in vertebrates such as depression and anxiety (Blaser

et al., 2010; Lee et al., 2010; Cachat et al., 2011; Vermoesen et al.,

2011; Zakhary et al., 2011; Ziv et al., 2013), sleep (Zhdanova et al.,

2001; Appelbaum et al., 2009), or addiction (Petzold et al., 2009;

Khor et al., 2011). The permeability, small size, genetic tractabil-

ity, transparency, and low cost of zebrafish make them highly

suitable for large-scale genetic and chemical screens (Driever

et al., 1996; Granato et al., 1996; Haffter and Nusslein-Volhard,

1996).

Although simple for a vertebrate, the locomotor patterns of the

zebrafish larva bring technical challenges to automated analysis.

Larvae spontaneously swim in discrete bouts in a manner often

described as “beat and glide,” which can be classified as individual

maneuvers, including slow forward swim, routine turn, or escape.

These short movements are characterized by a large range of tail-

beat frequencies (15–100 Hz), which require high-speed imaging

to capture accurately and can be separated by long resting peri-

ods of up to a few seconds. Manual tracking via frame-by-frame

analysis has formed the basis of contemporary knowledge and

has enabled initial characterization of the larval zebrafish loco-

motor repertoire (Budick and O’Malley, 2000; Borla et al., 2002;

McElligott and O’Malley, 2005). However, manual techniques are

both laborious and limited in scope for high-throughput screens

(Driever et al., 1996; Granato et al., 1996; Haffter and Nusslein-

Volhard, 1996). The currently available automated tools have

limitations in either refinement or time-scale. Recent chemical or

genetic screens have relied on commercial software that estimates
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an index of mobility of the larvae, usually measured as the dis-

tance traveled during a recording session or the amount of time

spent moving (Rihel et al., 2010; Elbaz et al., 2012; Rihel and

Schier, 2012). These approaches for high-throughput screens pro-

vide information about average velocity and distance traveled

by tracking the animals’ center-of-mass over minutes to hours.

Previous studies have either focused on analyzing movement

duration and speed at low frequency over long periods of time or

on fine analysis of kinematics at high frequency but for very short

acquisition (typically 1000 ms, Burgess and Granato, 2007; Liu

et al., 2012). Accurate categorization of maneuvers for each indi-

vidual in a group requires novel methods to record behavior with

high temporal resolution and over long durations, automatically

tracking and categorizing thousands of maneuvers.

Here we developed a new program, ZebraZoom, to track the

full body position over a multiple-minute timescale of 56 larvae

simultaneously recorded at high frequency and to finely charac-

terize each maneuver. To identify core and tail positions for large

datasets, videos were obtained on multiple larvae simultaneously

over long periods of time and at high resolution using a high-

speed camera run in a streaming-to-disk interface (Methods).

Typically 500–1000 movements from seven larvae were recorded

per dish in four minutes and eight dishes were monitored in par-

allel. To simplify tracking, we placed larvae in conditions that

reduced overlapping in the z-plane during swimming (Methods;

overlaps occurred on average once every 145 s per larva). We

developed an offline 2D tracking method for identifying and

separating each animal even when in close contact (Methods,

Figure 1). For each larva several features were identified, a core

position that included the head and swim bladder (Figure 1A)

and ten points along the tail (Methods and Figure 1B; Video S1).

As movements occurred as discrete episodes, ZebraZoom

detected movements based on the tail-bending angle over time

(Methods and Figures 1C–D). To validate the accuracy of move-

ment detection, one trained experimenter manually identified all

movements occurring in a subset of videos. In three videos rep-

resenting a total of 189 events, movements occurred with a false

negative rate of 2.7% and a false positive rate of 3.7%.

To quantify movements in a consistent manner, we used the

location of the head, the position of the tail, the heading direction

and the tail-bending angle to estimate global parameters of loco-

motion (Figure 2A, Methods). We observed that movements for

5–7 dpf wild-type (WT) larvae occurred every 2.22 s on average

per larva (at 0.4495 ± 0.0117 Hz). For all movements identified,

larvae performed on average 3.19 ± 0.01 oscillations per move-

ment, had a 24.29 ± 0.03 Hz tail-beat frequency (TBF), lasting

189.5 ± 0.0004 ms with a 51.14 ± 0.18◦ heading direction range,

2.49 ± 0.008 mm traveled distance and 13.35 ± 0.04 mm/s speed

per maneuver. We illustrated the use of ZebraZoom for quanti-

fying the effects of a known glycinergic receptor antagonist, and

for analyzing a blind genetic mutant. Glycine is responsible for

reciprocal inhibition in the spinal cord that permits left-right

alternation to sustain oscillations (Dale, 1985; Grillner et al.,

1995; Granato et al., 1996; Drapeau et al., 2002; Li et al., 2004).

In zebrafish, mutants for glycinergic receptors or transporters

have been associated with defects in motor pattern generation

FIGURE 1 | Image processing for tracking of larvae’s core positions and

larvae’s tail and detection of movements based on the tail-bending

angle. (A) Tracking of the larvae’s core positions. (Ai) Initial image.

(Aii) Background image. (Aiii) Image with background subtracted.

(Aiv) Binary image. (Av) Eroded image. (Avi) For each larva, identification

of the core (blue dot) and heading direction (red axis). (B). Identifying the

tip of the tail. (Bi) The head center is located at the boundary of the head

and trunk. Candidate Point 1–4 along the tail are the four points of the

contour with the smallest x-value, smallest y-value, largest x-value, and

largest y-value caudal to reference points 1 and 2. (Bii) The two distances

d1 and d2 shown for candidate point 1. (Biii) The two vectors used to

identify the tail tip defined with the minimal scalar product for candidate

point 1. (C) Definition of the tail-bending angle (α) separating the body axis

(pink) and the line connecting the core and the tip of the tail (green).

(D) Example of the tail-bending angle over time with detection of

movements indicated by the pink line.
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FIGURE 2 | Global parameters describing locomotion in wild-type,

mutant, or drug-treated larvae. (A) Distribution of global parameters

of movements for 5–7 dpf WT larvae. From left to right: Number of

oscillations per movement, TBF in Hz across all movements, duration

of each movement in ms, heading direction range in degrees,

distance traveled per movement in mm, speed in mm/s during each

movement (eight videos, 420 larvae, six clutches, 5–7 dpf, 44,688

movements). All values were calculated per movement. (B) Effect of

the glycinergic receptor antagonist strychnine on the global parameters

of movements. White circles are before application, gray are after

application (two videos, 42 larvae for each condition, two clutches,

6–7 dpf, 10,459 movements). (C) Effect of the atoh7 mutation on the

global parameters characterizing movements (four videos, 112 mutants

atoh7−/− , and 112 control siblings, four clutches, 6 dpf). For (B,C):

error bars are standard errors of the mean and statistics were

calculated per larva.

(Granato et al., 1996; Odenthal et al., 1996; Hirata et al., 2005;

Masino and Fetcho, 2005). We measured the effect of bath appli-

cation of 75 µM strychnine on spontaneous locomotor activity

in larvae and compared to control siblings that were not exposed

to the drug (Figure 2B, Methods). For control larvae, we did not

observe a significant change in the occurrence of movements over

time (0.35 ± 0.05 movements per larva/s before and 0.27 ± 0.03

movements per larva/s after), or on any of the global param-

eters (Figure 2B; all p > 0.15). However the locomotor behav-

ior of larvae treated with strychnine was significantly impacted

(Figure 2B). Overall, movements occurred less frequently (0.30

± 0.04 Hz before and 0.12 ± 0.02 Hz after, p < 0.0002). Although

the average TBF during a movement did not change (p > 0.81),

the number of oscillations decreased (3.52 ± 0.17 before and 2.89

± 0.16 after; p < 0.0078), an effect that was associated with a

decrease in movement duration (p < 0.0001), distance traveled

(p < 10−5), and average speed (p < 10−5). Strychnine applica-

tion also resulted in a decrease in the range of heading direction

(p < 10−5). atoh7 mutant larva lack retinal ganglion cells, ren-

dering them blind (atoh7−/−, Kay et al., 2001). Considering

the importance of vision for zebrafish larvae, analyzing their

locomotor output could reveal corresponding behavioral differ-

ences. Overall atoh7−/− mutants generated episodic movements

less frequently than control siblings (0.33 ± 0.02 Hz vs. 0.51 ±

0.02 Hz, 112 larvae for each condition). Quantitative analysis of

global parameters of the blind mutants showed no difference

in the average TBF or the average speed per larva (Figure 2C;

p > 0.85 and p > 0.83, respectively) but there were small but sig-

nificant decreases in the number of oscillations, duration, heading

direction range, and distance traveled (Figure 2C; all p < 10−3).
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These defects were observed systematically in four clutches.

atoh7−/− mutants thus display small but substantial differences

in basic motor behavior when compared to control siblings.

Zebrafish larvae display a variety of locomotor maneuvers that

are often grouped into discrete categories. In these experimental

conditions, three types of movement occur in groups of larvae

at early stages: slow forward swims (S), routine turns (T, also

referred to as slow turns), and escapes (E, including C-turns

or burst swims). Figure 3 shows examples of these movements

reported by ZebraZoom. For each maneuver, we superimposed

a succession of images (Figures 3Ai–Ci), the tail-bending angle

over time (Figures 3Aii–Cii) and the curvature along the rostro-

caudal axis and as a function of time (Figures 3Aiii–Ciii). The

three types of maneuvers included a series of slow left-right alter-

nation; high values of curvature were confined to the caudal

tail (Figures 3Aiii–Ciii). While high values of curvature of the

tail were confined to the caudal end for slow forward swims

(Figure 3Aiii), high values of curvature were distributed from

head to tail for routine turns and escapes (Figures 3Biii,Ciii).

Stereotypical routine turns and escapes differed by the frequency

of left-right alternation in the tail bend (Figures 3Biii,Ciii). As

larvae did not always exhibit a canonical slow forward swim,

routine turn or escape, some movements were ambiguous. To

estimate the percentage of these movements, four experimenters

subjectively classified 390 movements distributed over eight

videos. Overall about 82% of all movements were classified uni-

formly by at least three out of four experimenters (Methods)

indicating that 18% of movements were difficult to categorize.

Using knowledge of stereotypical locomotor events, we

designed a multiclass categorization approach with supervised

machine learning to automatically sort each movement into one

of the three categories. To implement the multiclass categoriza-

tion, we used two successive support vector machine (SVM)

classifiers: the first classifier sorted S vs. all other maneuvers, and

when necessary the second classifier sorted T vs. E. Locomotor

events were segregated subjectively in the training set (n = 201).

This machine learning approach relied on associating dynamic

parameters extracted from the tail-bending angle over time with

each maneuver type identified in the training set (Figure 4A

and Methods). To reduce the dimensionality of the data, we

Table 1 | Estimation of ZebraZoom categorizing accuracy based on

the different reference experimenters.

All movements (%) S (%) T (%) E (%)

Experimenter #1 82.5 85 82 79

Experimenter #2 73.2 85 60 53

Experimenter #3 74.3 73 80 58

Experimenter #4 75.4 79 77 47

FIGURE 3 | Typical maneuvers occurring in groups of 5–6 dpf larvae.

(A) Slow forward swim (S). (B) Routine turn (T). (C) Escape response

(E). (Ai–Ci) Superimposed images taken every 17 ms. (Aii–Cii) The

tail-bending angle over time for each maneuver. (Aiii–Ciii) Plots of the

curvature of the tail as a function of time and position along the rostro-caudal

body axis.
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performed Principal Component Analysis (PCA). Based on the

selection of a trained experimenter on the learning set, we val-

idated the multiclass categorization to sort maneuvers by com-

parison with the subjective classification performed by a trained

experimenter for a recognition set (n = 189; Figures 4B,C). We

observed that ZebraZoom agreed with the trained experimenter

82.5% of the time for the recognition dataset (85% for S, 82%

for T, and 79% for E; Figures 4B,C; Table 1 and Methods).

When compared to four independent experimenters, ZebraZoom

reached 91% accuracy for categorization of stereotypical maneu-

vers that all experimenters had unanimously identified and

76.4% on average for all maneuvers (73.2–82.5%, Table 1).

Once validated, we applied the ZebraZoom categorization algo-

rithm on a large dataset of 44,688 movements of WT larvae

(Figure 4D). We identified 14.911 S (33.36%), 21,432 T (49.96%),

and 8,345 E (18.67%). The distribution of global parameters for

the three classes of maneuvers were similar in terms of num-

ber of oscillations and duration, but they differed in terms of

mean TBF, heading direction range, distance traveled and speed

(Figure 4D).

The investigation of interactions between individuals lead-

ing to coordinated motion in animal groups has been a long-

standing challenge that is central to elucidating the mecha-

nisms and evolution of collective behavior. Most studies have

focused on the analysis of speed or directionality to reflect the

interaction between animals (Katz et al., 2011; Gautrais et al.,

2012). We availed ourselves of ZebraZoom’s features to accu-

rately identify each larva and categorize their maneuvers to

study how larvae interacted. In comparison to juvenile and adult

zebrafish that swim continuously, larval zebrafish swim episod-

ically with maneuvers that occur in a beat-and-glide manner.

Each movement can be regarded as a discrete event, therefore

we were motivated to explore how local perturbations of a sin-

gle individual could impact the group. The program switched

identity of larvae once every 109 s (once every 49 movements

on average), allowing us to track single larvae. We modeled

sequences of maneuvers performed by larvae within a group as

Markov chains. Utilizing the classifier, we described larva–larva

interactions in a group and intrinsic properties of individu-

als. We calculated a transition index (I) for each sequence of

two maneuvers as the transition probability between first and

second maneuvers divided by the probability of random occur-

rence of the second maneuver (Figure 5; Table 2 and Methods).

When the two successive maneuvers were the same, a higher

transition index indicated the probability of repetition of this

maneuver was greater than chance. The transition index was

equal to one when the order of sequential maneuvers was ran-

dom. Overall I was greater than one for repetition of the

same maneuvers (Table 2). We sorted the data into interactions

between different animals and the repetition within the same

animal. We analyzed how the transition index for a given suc-

cession of maneuvers depended on the distance between the

two larvae’s core positions at the onset of the movement and

the time between the onset of each movement (Figure 5 and

Methods). Individual larvae often performed the same type

of maneuver sequentially (maximal values IS max (same) = 1.43,

IT max (same) = 1.37, IE (same) = 2.38, all p < 0.002; Figure 5A,

Table 2, and Methods). Although slow forward swims or rou-

tine turns were not frequently repeated between larvae (I close

to 1: maximal values IS (diff) = 1.09 and IT (diff) = 1.01, p >

0.05; Figures 5Bi,ii, Table 2, and Methods), we found that recur-

rent escapes were very frequent between different larvae (max-

imal value IE (diff) = 3.6, p < 0.002; Figure 5Biii, Table 2, and

Methods). Five to seven dpf larvae do not show evidence for

social interactions (Buske and Gerlai, 2011). By taking advan-

tage of the algorithm for identifying single larva and categorizing

simple maneuvers, we reveal that larva–larva interactions pri-

marily occurred for escape responses. These series of escapes

occurred after direct collisions (in one third of the cases) or via

long distance interaction (two third of cases). Blind atoh7−/−

larvae showed a similar profile of interactions for escapes (data

not shown); these interactions were most likely mechanically

triggered.

Large-scale chemical and genetic screens would benefit from

a quantitative approach to analyze fine locomotor patterns

over long periods of time. Compared to other genetic models,

zebrafish locomotion is difficult to analyze because larvae initi-

ate maneuvers intermittently and during these short events, the

larvae swim at a high speed with TBFs ranging from 15–100 Hz.

The quantitative analysis of motor behavior for large-scale screens

requires solving the problem of recording multiple animals simul-

taneously at high frequency (above 200 Hz) and for long periods

of time (minutes). Here we implemented a reliable method for

quantifying global parameters of movements based on stream-to-

disk recordings acquired at high frequency and over long periods

of time, limited only by data storage. Next we developed a robust

method for tracking the full body position of zebrafish larvae

swimming in groups. We first manually validated that the track-

ing accurately detected discrete movements, and then used the

global parameters obtained to characterize the locomotion of

WT larvae. Quantification of the global parameters describing

larval movements corroborates previous observations based on

fewer samples (Budick and O’Malley, 2000; Danos and Lauder,

2007; Liu et al., 2012). Similar estimates of the duration of

movements, distance traveled and speed were obtained from the

recent application of C-trax (designed originally for Drosophila)

to zebrafish larvae [Lambert et al. (2012) based on Branson

et al. (2009)]. In these conditions, recordings at low frequency

over long periods of time, typically 60 Hz for minutes or hours,

revealed the global level of activity over time but no informa-

tion on fine kinematics during individual maneuvers (Elbaz et al.,

2012). When recordings were performed at high frequency to cap-

ture the dynamics of motion, they usually lasted 1000 ms (Burgess

and Granato, 2007).

We illustrated the benefit of ZebraZoom to quantify global

parameters of movements by analyzing the effect of a drug to

block glycinergic neurotransmission, which has been known to

be involved in motor pattern generation and alternation between

the left and right side of the spinal cord across vertebrate species

(Grillner, 2003; Korn and Faber, 2005; Nishimaru and Kakizaki,

2009). Most studies relied on ventral nerve root recordings where

muscles were dissected out or paralyzed in order to record the

activity of motor neurons at the level of a few segments at

most. Our automated quantification of locomotor events enabled
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FIGURE 4 | Validation of the automated categorization of maneuvers:

slow forward swim (S), routine turn (T) and escape (E). (A) Dynamic

parameters used for categorizing the different maneuvers: amplitude of

tail-bending angle (TBA) in degrees, integrated TBA in degrees, TBF in Hz,

and speed in mm/s. The mean of each parameter for each time bin is shown

and error bars are standard error of the mean: S in pink, T in green and E in

blue. Time 0 is taken at the peak of the first bend of the movement.

(B,C) Comparison of the results of the automatic categorization from

ZebraZoom with the subjective categorization by a trained experimenter on

189 movements from one video. The comparison of the categorization is

shown overall (B) and for each maneuver (C: Ci for S, Cii for T, Ciii for E). The

proportion of movements categorized the same way by both methods is

shown in addition to the proportion of movements miscategorized and how

they were categorized. (D) Distribution of global parameters for each

maneuver S, T, and E of WT larvae (same color code as in A; 44,688

movements total from eight videos, six clutches).
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FIGURE 5 | Larva–larva interactions occurred most frequently as

sequences of escapes. Transition index for the same larvae (A) and

for different larvae (B). Time is plotted in seconds from the time of

initiation of the first movement. Distance is plotted from the core

position of the larva at the beginning of a movement. (Ai,Bi) The

sequence S–S. (Aii,Bii) The sequence T–T. (Aiii,Biii) The sequence

E–E (36,068 total movements from five videos, 280 WT larvae, four

clutches, 5–6 dpf).

Table 2 | Transition index for sequence of two maneuvers estimated

as the probability of transition from maneuver 1 to maneuver 2

divided by the occurrence of the maneuver 2.

S T E

INTERACTIONS BETWEEN DIFFERENT ANIMALS

S 1.0498 1.0152 0.8481

T 1.0087 1.0413 0.8606

E 0.8549 0.8493 1.7528

REPETITIONS WITHIN THE SAME ANIMAL

S 1.2162 0.8947 0.8413

T 0.9091 1.1185 0.8499

E 0.8263 0.8887 1.6995

identification of effects induced by bath application of the glycin-

ergic antagonist strychnine on locomotion in intact animals. As

predicted, bath application of strychnine dramatically reduced

the occurrence of movements and the number of oscillations per

movement, that was correlated with a reduction of the dura-

tion of movement and of the distance traveled. While mean TBF

was not affected, we observed a reduction in the heading direc-

tion range and in speed. Our approach pinpointed effects of

glycinergic blockade, including a reduction in the number of

oscillations per movement, a kinematic feature not estimated in

commercially available software. The analysis of the mutant atoh7

revealed that although TBF and speed were not affected in the

blind mutant, there was a small but significant decrease in the

number of oscillations, heading direction range, distance, and

duration of each bout compared to their control siblings. These

effects were systematically observed on four clutches suggesting

that visual feedback may impact some global parameters of loco-

motion. However since the pattern of expression of atoh7 has not

yet been fully characterized, it cannot be excluded that the gene

may be expressed in cells other than retinal ganglion cells.

The originality of ZebraZoom lies in categorizing all maneu-

vers performed by individual larvae in a group. The subjective

analysis of maneuvers based on four independent experimenters

revealed that locomotor maneuvers were not obvious to catego-

rize. Based on subjective estimates, 18% of all movements corre-

sponded to ambiguous maneuvers. By using a machine-learning

paradigm, we trained ZebraZoom to categorize all maneuvers

over tens of thousands of movements with 82.5% accuracy, a sim-

ilar value to the 72% agreement rate of all four experimenters

measured over a few hundreds of movements. The approach we

developed here could be expanded to include directionality of the

turns, sequences of maneuvers such as those occurring during

prey tracking, and subcategories of escapes.

This study constitutes an important first step for accurate

tracking of multiple larvae in groups over long periods of time

and for categorizing maneuvers. Some improvements could be

implemented in the future. While our tracking method currently

relies on a simple “blob” approach solely based on raw image

analysis, a model-based approach may be more reliable in partic-

ular when animals are in close contact (Fontaine et al., 2008). We

show here that ZebraZoom can achieve an accurate categoriza-

tion of maneuvers, comparable to experimenters’ estimates, based

solely on the dynamics of movement of head and tail. An interest-

ing avenue of exploration to address this could be investigation

of novel dynamic parameters for the learning and recognition

process of the classifier to yield subtler methods for detection of

defects. Quantification of motor patterns in C. elegans is based

on a description of all possible positions of the animal over

time (Stephens et al., 2008). In order to fully understand larval

zebrafish behavior we need to identify a minimal set of param-

eters sufficient to describe all motor patterns. All together this
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work brings new insight to the complexity of behavior determi-

nation in zebrafish larvae and could be applied to investigation of

the mechanisms of addiction, arousal, feeding, social interaction

and aggression in larvae and juveniles (Gahtan et al., 2005; Bianco

et al., 2011; Buske and Gerlai, 2011; Miller and Gerlai, 2012; Ziv

et al., 2013). The observation of complex interactions in juve-

niles raises the hope that it will soon be possible to investigate the

neuronal circuits and molecular pathways underlying social inter-

actions. The fact that we can track individual larva and analyze

their interactions is a major advance over existing methods. Our

approach that systematically quantifies and categorizes thousands

of motor patterns was designed to bring efficiency and reliability

to drug screening and forward genetic screens. ZebraZoom can

detect, quantify, and categorize movements to provide a quan-

titative description of global parameters as well as a qualitative

description of all maneuvers performed by individual larvae.

METHODS

ZEBRAFISH HUSBANDRY

All experiments were performed on Danio rerio larvae between 5

and 7 dpf. AB and TL strains of WT larvae were obtained from

our laboratory stock of adults. Embryos and larvae were raised

in an incubator at 28.5◦C under a 14/10 light/dark cycle (lights

on, 8:00 A.M.; lights off, 10:00 P.M.) until the start of behavioral

recordings. The mutant line for atoh7 (Kay et al., 2001) was given

by Dr. Herwig Baier, MPI Munich. Double recessive atoh7−/−

mutants were identified at 5 dpf by their dark pigmentation. All

procedures were approved by the Institutional Ethics Committee

at the Research Center of the Institut du Cerveau et de la Moelle

épinière (CRICM).

BEHAVIORAL RECORDINGS

Motor behavior of 56 larvae split into eight dishes (seven

larvae per dish, Figure 1Ai) on a homogeneous illumi-

nation plate (light intensity 0.78 mW/cm2, Phlox, ref.

LEDW-BL-200/200-LLUB-Q-1R24) in egg water (http://zfin.

org/zf_info/zfbook/chapt1/1.3.html, methylene blue added at

0.5 ppm). Following acclimation, larvae were recorded for 4 min

at 337 Hz with a high-speed camera (VC-2MC-M340E0-C,

CMOS chip 2048 × 1088 pixels, Vieworks, South Korea) placed

above the setup and coupled to a camera objective (AF Nikkor

50 mm f/1.8D, Nikon, Japan). Pixel size was 66 µm. We developed

a direct-to-disk high-speed imaging system designed for long

acquisitions of raw images in collaboration with R&D Vision,

France. Behavioral recordings were performed between 2:00

and 5:00 P.M. Larvae were acclimated for 60 minutes on the

light source at room temperature (21–22◦C) and kept at room

temperature during all recordings. Larvae were kept in dishes

with an inner diameter of 2.2 cm and an outer diameter of 3.5 cm

(Figure 1A). Water was kept at a low level (2 mm) in order to

reduce the occurrence of crossings between larvae. Typically

500–1000 movements were recorded in each 4-min session for

each well.

ZEBRAZOOM TRACKING ALGORITHM

The first step is to track the core and then the tail for all lar-

vae over time. Written in C++ using the openCV library, the

program identified the center position and heading direction of

each larva (Figures 1Ai–vi). The algorithm used a Hough trans-

form to identify the eight wells. For each well the background

was estimated as the maximum pixel value over all frames of the

video recording (Figure 1Aii) and then subtracted for all frames

for that well (Figure 1Aiii). The resulting image was converted

to binary (Figure 1Aiv). An erosion filter was applied twice in a

row with a 3 by 3 structuring element (Figure 1Av). The “core” of

the larva referred to the resulting connected components that had

an appropriate area (between 0.0871 and 0.8712 mm2). The core

of the larva included the head and the trunk with swim bladder

(Figure 1Avi). The algorithm identified the head center position

as the center of mass of the putative cores for each larva in a frame.

To follow each larva across subsequent frames, ZebraZoom used

the information from the previous two frames (core position and

speed) to predict the position of the larva and located the closest

core out of all the possible cores. The heading direction for each

larva was calculated simultaneously using the moments of the

eroded body (up to the second order, see red lines in Figure 1Avi).

For each larva with an identified core, we determined the “full

body” referring to the connected component of the binary image

in Figure 1Aiv. In order to track the tail, the full body was rotated

so that the head axis was parallel to the y-axis, always in the same

orientation. To identify the contour of the tail in the coordinate

system defined by the head axis, a series of points was extracted

from the full body by using the algorithm of Suzuki and Abe

(1985), (white dots in Figures 1Bi–iii). Reference point A1 was

the closest point on the contour line from the head center and

reference point A2 was the point symmetrical along the head axis

to reference point A1 on the contour. In order to identify the tip of

the tail, four candidate points on the contour were selected with

minimal and maximal x- and y-values (Figures 1Bi–iii). For the

maximal y-value the point also had to be above a given distance

away from the two reference points [below a 20% threshold for

the ratio |(d1 − d2)|/(d1 + d2), Figure 1Bii]. Distances d1 and d2

were calculated from each candidate point to the reference points

A1 and A2 along the contour (Figure 1Bii). Candidate points

with a ratio |(d1 − d2)|/(d1 + d2) over 0.25 were excluded. The

tip of the tail was then identified as the point associated with the

smallest scalar product of the tangential vectors pointing in oppo-

site directions (Figure 1Biii). The midline of the larva was defined

as the line equidistant to the contour line on the left and right side.

ERRORS IN CORE AND TAIL TRACKING

If an error occurred in the core tracking, the larva was missing

for that frame and there was no tracking of its tail. If the core of

a larva was identified, the algorithm proceeded to the tail track-

ing. To confirm that the tail tracking was correct, the algorithm

checked that the tail length was greater than 1.32 and less than

3.96 mm. If this criterion was invalid, the tail position was set

to the previous frame. This happened in 13.46% of frames on

average but was compensated by a smoothing spline on the cen-

ter positions between the left and right contour points of the tail

and a median filter applied on the tail-bending angle over time.

The tail-bending angle was defined as the angle between the axis

formed by the tip of the tail and the center of the head with respect

to the larva heading direction (Figures 1C,D).
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SEPARATING LARVAE DURING CONTACTS

Tracking was optimized to separate larvae in close vicinity to

one another or in direct contact. For core tracking, if the tra-

jectories of the two cores merged at a given time point, then

the algorithm considered that a collision occurred between the

two larvae. When the predicted positions of two larvae based on

core position and speed in the two previous frames were clos-

est to the same core, the algorithm considered that a collision

between the two larvae occurred at that frame. When a collision

was detected, the algorithm applied erosion filters in the region

of interest defined by the core until more than one isolated core

emerged. In rare cases, the multiple cores were not resolved and

the larva could not be tracked for that frame. For the tail track-

ing, if the area of the larva’s full body was greater than 1.9 mm2,

the algorithm considered that two larvae were in direct contact.

The distance separating the larvae’s cores determined which of

two algorithms was used to isolate the tails: if the distance was

less than 1.32 mm, a line separation algorithm was applied. A line

was created to separate the two larvae by optimizing the area of

the resulting tails, calculated by maximizing the sum of the two

largest areas containing a head center position. If the distance

was greater than 1.32 mm, a pixel intensity separation algorithm

was applied instead. The threshold used to convert the image

into binary was adjusted until two separate full bodies, each a

connected component, emerged and contained the head center

position. Larvae crossings occurred once every 145 s on average

per larva (0.0069 ± 0.0019 events per second) and the switching

of identification between two larvae after a collision was esti-

mated manually to occur every 109 s on average (0.0092 ± 0.0036

events per second per larva based on 720 s of recordings from four

videos, and 28 larvae).

DETECTION OF MOVEMENTS

Algorithms for the detection of movements and the behavior

analysis were written in MATLAB (The Mathworks, Inc., USA).

The detection of movement was based solely on threshold-

ing the tail-bending angle measured over time (Figures 1C,D).

ZebraZoom detected the start of a movement when the value for

the tail-bending angle at a given frame varied over 1.15◦ from

the mean value of the tail-bending angle for the ten surround-

ing frames, or 29.7 ms. To avoid separating single maneuvers

into multiple events, movements that occur within 14.8 ms of

each other were merged. To avoid false positives we considered

only movements in which the larva core had moved more than

0.099 mm and where the range of tail-bending angle values was

above 2.86 degrees. Additionally, only events during which the

eroded binary image of the larva had moved more than a set num-

ber of pixels between subsequent images were considered based

on the parameters used for the erosion. Rarely we have observed

two distinct movements occurring without a pause, such as a slow

forward swim followed by an escape due to a collision. In these

few cases when two movements occurred without a noticeable

stabilization in the tail-bending angle over time, the movements

were merged into one movement in our analysis.

Our tracking method was robust in these experimental con-

ditions. We cannot probe the impact of a reduction of contrast

or spatial resolution. All numerical thresholds used above for

tracking were fixed empirically, but they could easily be modified

for other users to adapt to other recording conditions.

CALCULATION OF THE CURVATURE

After alignment of the body axis with the y-axis in a consistent

orientation, the tail was represented parametrically in Cartesian

coordinates as [x(t), y(t)]. The midline of the tail was fitted to

the x(t), y(t) function with a spline. Curvature was calculated in

Cartesian coordinates:

c =

∣

∣x′y′′ − y′x′′
∣

∣

(

x′2 + y′2
)

(

3
2

)

where the derivatives were all calculated with respect to t, the

distance along the tail.

EXTRACTION OF GLOBAL PARAMETERS

For all frames of a video, ZebraZoom outputs variables for

each larva in each dish including: the position of its core, head

axis, midline position of its tail and tail-bending angle. For

each detected movement, a reference number for the larvae was

extracted along with the corresponding well number, start and

end time of the movement, and global parameters such as the

number of oscillations, TBF, movement duration, heading direc-

tion range referring to the range of values of the heading axis for

one movement with the heading angle reset to zero at the onset

of movement, distance traveled, average speed (distance traveled

divided by movement duration).

AUTOMATIC MULTICLASS CATEGORIZATION

We automatically attributed each movement detected in the video

to either one of the three maneuvers: slow forward swim, routine

turn or escape response. Our method relied on a dynamic set of

parameters extracted from the bending angle of the tail estimated

from the first tail bend over a limited time window (Figures 1C,

4A). We based our categorization on the four following parame-

ters: (1) the amplitude of the tail-bending angle (0–178 ms, bins

of 12 ms), (2) the instantaneous frequency (0–104 ms, bins of

7 ms), (3) the cumulative tail-bending angle calculated as the

average angle value over time (0–178 ms, bins of 12 ms), and (4)

the speed (0–240 ms, bins of 24 ms) (Figure 4A). The values of

these four dynamic parameters were interpolated with a spline

for a given time window during the movement and then used

for categorization of every movement. PCA was first performed

to reduce noise and dimensionality. Each movement was subse-

quently represented by the fourteen first principal components of

the PCA out of 53 components (representing all together about

93% of the variance), to which the total duration of the movement

was added. Multiclass categorization was implemented in two

steps: a series of two subsequent SVM classifiers with linear kernel

was applied for automatic categorization of movements: the first

SVM classifier discriminated slow forward swims vs. turns and

escapes, and if necessary a second SVM discriminated between

a routine turn and an escape. We used two distinct datasets

from WT 5–7 dpf larvae, one for learning the three maneuver

types (five videos, n = 201 movements) and one for testing their

recognition (three videos, n = 189 movements).
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ESTIMATING THE RECURRENCE OF MANEUVERS

Successions of maneuvers performed by larvae in a given dish

were modeled as Markov chains. Out of the nine possible

sequences of two maneuvers (S–S, S–T, S–E, T–S, T–T, T–E, E–S,

E–T, E–E), we estimated the frequency of occurrence of each

sequence. For a given movement classified as S, T, or E occurring

at a given time in one dish, we calculated the transition proba-

bility for the subsequent movement to be classified as S, T, or E.

We calculated a weighted transition index (I) for each sequence of

two sequential maneuvers as the ratio of the transition probability

from the first maneuver to the second, divided by the probability

of occurrence of the second maneuver (Table 2 for values of all

transition indexes). When I is equal to 1, the probability of repeat-

ing a maneuver is equal to the probability of random occurrence

of the maneuver (probability of random occurrence was 0.35 for

S; 0.48 for T and 0.16 for E; Table 2). Thus the index of recurrence

I was defined as:

I(B1, B2) =
p(xi = B1|xi − 1 = B2)

p(xi = B1)

with B1 and B2 as two possible maneuvers (S, T, or E) and xi − 1

and xi as two successive movements. WT larvae were used to esti-

mate the transition index (36,068 movements from 280 larvae

originating from four clutches and obtained from 40 wells). To

investigate the recurrence of maneuvers as a function of time and

distance, we calculated I as a function of the distance separating

the two head centers of the larvae at the onset of their respective

movement and the time as the time interval between the onsets

of the first and second movement. I was calculated for many dif-

ferent time and distance windows. In Figure 5, we plotted these

indexes for the sequences S–S, T–T, and E–E. We first calculated

the index for the same larva (Figures 5Ai–iii) and across different

larvae (Figures 5Bi–iii).

STATISTICAL ANALYSIS

The data used for Figure 2A were based on eight videos, 420 WT

AB larvae from six different clutches between 5 and 7 dpf. All val-

ues were given as mean ± standard error of the mean (s.e.m.)

calculated per movement. For the pharmacology experiments

(Figure 2B), strychnine was bath applied at 75 µM and the data

were based on two videos of 84 WT larvae coming from two

clutches (42 for controls and 42 for strychnine) between 6 and

7 dpf. The data on atoh7−/− mutants in Figure 2C were generated

using four videos, 224 larvae total originating from four clutches

(112 atoh7−/− and 112 control siblings). All global parameters

plotted in Figures 2B,C were calculated per larva then averaged

across all larvae and means were given ± s.e.m. across all lar-

vae. Since the distributions of global parameters were not normal,

a standard non-parametric Wilcoxon rank sum test was used

in MATLAB for calculating differences between conditions with

vs. without drugs for Figure 2B and atoh7−/− vs. siblings for

Figure 2C. The data used for Figure 4D were based on 44,688

movements from eight videos, 448 larvae, six clutches and for

Figure 5 from 36,068 movements from five videos, 280 WT AB

larvae from four clutches. To test how the maximal values of

the transition index were different from random, we calculated

Imax after randomly permuting maneuvers while keeping track

of the larva identity, time, and location the same for 50 itera-

tions. For each comparison, S–S, T–T, E–E across different larvae

or within the same larva, we compared the values of Imax after

randomization to the measured value Imax using a two-sample

T-test.

DATA AND ALGORITHM SHARING

The software ZebraZoom is documented and available online

from Source Forge in the code tab (http://sourceforge.net/p/

zebrazoom/wiki/Home/). ZebraZoom requires MATLAB and

works reliably on an Ubuntu 11.04 computer with OpenCV

installed and MATLAB 7.10.
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The Supplementary Material for this article can be found
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Video S1 | ZebraZoom tracking of seven larvae in a dish. Acquisition

was performed at 300 Hz, and one out of every ten images is displayed

(every 33.3 ms).
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