scispace - formally typeset
A

Adam P. Arkin

Researcher at Lawrence Berkeley National Laboratory

Publications -  483
Citations -  65570

Adam P. Arkin is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 96, co-authored 447 publications receiving 56301 citations. Previous affiliations of Adam P. Arkin include University of Missouri & California Institute for Quantitative Biosciences.

Papers
More filters
Journal ArticleDOI

FastTree 2--approximately maximum-likelihood trees for large alignments.

TL;DR: Improvements to FastTree are described that improve its accuracy without sacrificing scalability, and FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments.
Journal ArticleDOI

Functional profiling of the Saccharomyces cerevisiae genome.

Guri Giaever, +72 more
- 25 Jul 2002 - 
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Journal ArticleDOI

Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

TL;DR: This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale and can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects.
Journal ArticleDOI

FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix

TL;DR: FastTree is a method for constructing large phylogenies and for estimating their reliability, instead of storing a distance matrix, that uses sequence profiles of internal nodes in the tree to implement Neighbor-Joining and uses heuristics to quickly identify candidate joins.
Journal ArticleDOI

The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models.

TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.