scispace - formally typeset
Z

Zhiguo Ding

Researcher at University of Manchester

Publications -  926
Citations -  49191

Zhiguo Ding is an academic researcher from University of Manchester. The author has contributed to research in topics: Relay & Computer science. The author has an hindex of 88, co-authored 817 publications receiving 35162 citations. Previous affiliations of Zhiguo Ding include Princeton University & Queen's University Belfast.

Papers
More filters
Journal ArticleDOI

On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

TL;DR: In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users and developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of N OMA depends critically on the choices of the users' targeted data rates and allocated power.
Journal ArticleDOI

Application of Non-Orthogonal Multiple Access in LTE and 5G Networks

TL;DR: A systematic treatment of non-orthogonal multiple access, from its combination with MIMO technologies to cooperative NOMA, as well as the interplay between N OMA and cognitive radio is provided.
Journal ArticleDOI

A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future challenges and future research challenges.
Journal ArticleDOI

Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions

TL;DR: Both analytical and numerical results are provided to demonstrate that F-NOMA can offer a larger sum rate than orthogonal MA, and the performance gain of F- NOMA over conventional MA can be further enlarged by selecting users whose channel conditions are more distinctive.
Journal ArticleDOI

6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies

TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.