scispace - formally typeset
Search or ask a question
Institution

Babraham Institute

FacilityCambridge, United Kingdom
About: Babraham Institute is a facility organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: DNA methylation & Gene. The organization has 2010 authors who have published 3798 publications receiving 317602 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The universality of calcium as an intracellular messenger depends on its enormous versatility, which is exploited to control processes as diverse as fertilization, proliferation, development, learning and memory, contraction and secretion.
Abstract: The universality of calcium as an intracellular messenger depends on its enormous versatility. Cells have a calcium signalling toolkit with many components that can be mixed and matched to create a wide range of spatial and temporal signals. This versatility is exploited to control processes as diverse as fertilization, proliferation, development, learning and memory, contraction and secretion, and must be accomplished within the context of calcium being highly toxic. Exceeding its normal spatial and temporal boundaries can result in cell death through both necrosis and apoptosis.

5,369 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: The Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics and has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Abstract: Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.

5,042 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: Bismark is a flexible tool for the time-efficient analysis of BS-Seq data which performs both read mapping and methylation calling in a single convenient step and enables bench scientists to visualize and interpret their methylation data soon after the sequencing run is completed.
Abstract: Summary: A combination of bisulfite treatment of DNA and high-throughput sequencing (BS-Seq) can capture a snapshot of a cell's epigenomic state by revealing its genome-wide cytosine methylation at single base resolution. Bismark is a flexible tool for the time-efficient analysis of BS-Seq data which performs both read mapping and methylation calling in a single convenient step. Its output discriminates between cytosines in CpG, CHG and CHH context and enables bench scientists to visualize and interpret their methylation data soon after the sequencing run is completed. Availability and implementation: Bismark is released under the GNU GPLv3+ licence. The source code is freely available from www.bioinformatics.bbsrc.ac.uk/projects/bismark/. Contact: ku.ca.crsbb@regeurk.xilef Supplementary information: Supplementary data are available at Bioinformatics online.

3,685 citations


Authors

Showing all 2021 results

NameH-indexPapersCitations
Tomas Hökfelt158103395979
Peter A. Jones13051381683
Wolf Reik12632962174
David Brown105125746827
Deepak Srivastava10149043236
Michael J. Berridge10022268051
Martin R Turner9850334965
Sydney Brenner9534054977
Luis M. Garcia-Segura8848427077
Steve P. Watson8643223671
Sarah C. Gilbert8531424818
Tim Hubbard8318691839
Anne C. Ferguson-Smith8223023328
Victor L. J. Tybulewicz8020825771
Allan E. Herbison7826221152
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202216
2021159
2020170
2019141
2018143