scispace - formally typeset
Search or ask a question
Institution

British Antarctic Survey

GovernmentCambridge, United Kingdom
About: British Antarctic Survey is a government organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Sea ice & Ice sheet. The organization has 1365 authors who have published 5251 publications receiving 246049 citations. The organization is also known as: BAS.


Papers
More filters
Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Abstract: There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.

9,369 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations

Journal ArticleDOI
TL;DR: The Twentieth Century Reanalysis (20CR) dataset as discussed by the authors provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions.
Abstract: The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

3,043 citations

Journal ArticleDOI
TL;DR: In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO 2 by the carbon sinks in response to climate change and variability as mentioned in this paper.
Abstract: Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

1,909 citations

Journal ArticleDOI
TL;DR: In this paper, a new common stratigraphic timescale for the North Greenland Ice Core Project (NGRIP) and GRIP ice cores is presented, which covers the period 7.9-14.8 kyr before present and includes the Bolling, Allerod, Younger Dryas, and early Holocene periods.
Abstract: [1] We present a new common stratigraphic timescale for the North Greenland Ice Core Project (NGRIP) and GRIP ice cores. The timescale covers the period 7.9–14.8 kyr before present and includes the Bolling, Allerod, Younger Dryas, and early Holocene periods. We use a combination of new and previously published data, the most prominent being new high-resolution Continuous Flow Analysis (CFA) impurity records from the NGRIP ice core. Several investigators have identified and counted annual layers using a multiparameter approach, and the maximum counting error is estimated to be up to 2% in the Holocene part and about 3% for the older parts. These counting error estimates reflect the number of annual layers that were hard to interpret, but not a possible bias in the set of rules used for annual layer identification. As the GRIP and NGRIP ice cores are not optimal for annual layer counting in the middle and late Holocene, the timescale is tied to a prominent volcanic event inside the 8.2 kyr cold event, recently dated in the DYE-3 ice core to 8236 years before A. D. 2000 (b2k) with a maximum counting error of 47 years. The new timescale dates the Younger Dryas-Preboreal transition to 11,703 b2k, which is 100–150 years older than according to the present GRIP and NGRIP timescales. The age of the transition matches the GISP2 timescale within a few years, but viewed over the entire 7.9–14.8 kyr section, there are significant differences between the new timescale and the GISP2 timescale. The transition from the glacial into the Bolling interstadial is dated to 14,692 b2k. The presented timescale is a part of a new Greenland ice core chronology common to the DYE-3, GRIP, and NGRIP ice cores, named the Greenland Ice Core Chronology 2005 (GICC05). The annual layer thicknesses are observed to be log-normally distributed with good approximation, and compared to the early Holocene, the mean accumulation rates in the Younger Dryas and Bolling periods are found to be 47 ± 2% and 88 ± 2%, respectively.

1,789 citations


Authors

Showing all 1449 results

NameH-indexPapersCitations
Kevin J. Gaston15075085635
William J. Sutherland14896694423
Adrian Jenkins11842766331
Kevin C. Jones11474450207
Steven L. Chown9150331437
Andrew Clarke8928023979
Daniel Johnston8621325839
Valérie Masson-Delmotte8226431539
John Turner8034730479
Josephine Arendt7823620281
John C. Moore7638925542
Eric W. Wolff7631823567
Alex Rogers7348322094
David A. Pearce7239618416
Richard B. Horne7224816546
Network Information
Related Institutions (5)
Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

93% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

92% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022104
2021342
2020290
2019266
2018228