scispace - formally typeset
Search or ask a question
Institution

Centre National D'Etudes Spatiales

GovernmentParis, France
About: Centre National D'Etudes Spatiales is a government organization based out in Paris, France. It is known for research contribution in the topics: GNSS applications & Satellite. The organization has 2448 authors who have published 3384 publications receiving 70454 citations.


Papers
More filters
Journal ArticleDOI
08 Jul 1993-Nature
TL;DR: In this article, the authors used Synthetic Aperture Radar (SAR) interferometry to capture the movements produced by the 1992 earthquake in Landers, California, by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake.
Abstract: GEODETIC data, obtained by ground- or space-based techniques, can be used to infer the distribution of slip on a fault that has ruptured in an earthquake. Although most geodetic techniques require a surveyed network to be in place before the earthquake1–3, satellite images, when collected at regular intervals, can capture co-seismic displacements without advance knowledge of the earthquake's location. Synthetic aperture radar (SAR) interferometry, first introduced4 in 1974 for topographic mapping5–8 can also be used to detect changes in the ground surface, by removing the signal from the topography9,10. Here we use SAR interferometry to capture the movements produced by the 1992 earthquake in Landers, California11. We construct an interferogram by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake. The observed changes in range from the ground surface to the satellite agree well with the slip measured in the field, with the displacements measured by surveying, and with the results of an elastic dislocation model. As a geodetic tool, the SAR interferogram provides a denser spatial sampling (100 m per pixel) than surveying methods1–3 and a better precision (∼3 cm) than previous space imaging techniques12,13.

1,970 citations

Journal ArticleDOI
TL;DR: The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.
Abstract: Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of using antenna synthesis methods has been investigated. Such a system, relying on a deployable structure, has now proved to be feasible and has led to the Soil Moisture and Ocean Salinity (SMOS) mission, which is described. The main objective of the SMOS mission is to deliver key variables of the land surfaces (soil moisture fields), and of ocean surfaces (sea surface salinity fields). The SMOS mission is based on a dual polarized L-band radiometer using aperture synthesis (two-dimensional [2D] interferometer) so as to achieve a ground resolution of 50 km at the swath edges coupled with multiangular acquisitions. The radiometer will enable frequent and global coverage of the globe and deliver surface soil moisture fields over land and sea surface salinity over the oceans. The SMOS mission was proposed to the European Space Agency (ESA) in the framework of the Earth Explorer Opportunity Missions. It was selected for a tentative launch in 2005. The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.

1,528 citations

Journal ArticleDOI
TL;DR: The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA) as discussed by the authors.
Abstract: The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic field.

1,268 citations

Journal ArticleDOI
TL;DR: In this article, the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16, and there are 1235 planetary candidates with transit-like signatures detected in this period.
Abstract: On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

1,241 citations

Posted Content
René J. Laureijs, Jérôme Amiaux, S. Arduini1, J.-L. Auguères  +217 moreInstitutions (14)
TL;DR: Euclid as mentioned in this paper is a space-based survey mission from the European Space Agency designed to understand the origin of the universe's accelerating expansion, using cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures.
Abstract: Euclid is a space-based survey mission from the European Space Agency designed to understand the origin of the Universe's accelerating expansion. It will use cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of structure formation. The mission is optimised for two independent primary cosmological probes: Weak gravitational Lensing (WL) and Baryonic Acoustic Oscillations (BAO). The Euclid payload consists of a 1.2 m Korsch telescope designed to provide a large field of view. It carries two instruments with a common field-of-view of ~0.54 deg2: the visual imager (VIS) and the near infrared instrument (NISP) which contains a slitless spectrometer and a three bands photometer. The Euclid wide survey will cover 15,000 deg2 of the extragalactic sky and is complemented by two 20 deg2 deep fields. For WL, Euclid measures the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+I+Z band (550-920 nm). The photometric redshifts for these galaxies reach a precision of dz/(1+z) \lt 0.05. They are derived from three additional Euclid NIR bands (Y, J, H in the range 0.92-2.0 micron), complemented by ground based photometry in visible bands derived from public data or through engaged collaborations. The BAO are determined from a spectroscopic survey with a redshift accuracy dz/(1+z) =0.001. The slitless spectrometer, with spectral resolution ~250, predominantly detects Ha emission line galaxies. Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme, with a foreseen launch date in 2019. This report (also known as the Euclid Red Book) describes the outcome of the Phase A study.

1,213 citations


Authors

Showing all 2467 results

NameH-indexPapersCitations
Timothy M. Heckman170754141237
Alain Benoit12446586284
Serge Gratton10726880809
Rafael A. García10463737040
Yang Shao-Horn10245849463
Kurt Lambeck9030931689
David K. Sing8023017400
Yann Kerr7441622849
Roger Temam7247337338
Anny Cazenave7227620198
Claude Delmas6928816841
D. Christopher Martin6819922306
Pierre-Louis Taberna6820934293
Daniel J. Scheeres6675921086
Kenneth R. Sembach5916513667
Network Information
Related Institutions (5)
Ames Research Center
35.8K papers, 1.3M citations

86% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

85% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

84% related

California Institute of Technology
146.6K papers, 8.6M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202229
2021114
2020159
2019189
2018171