scispace - formally typeset
Search or ask a question
Institution

Cooperative Institute for Meteorological Satellite Studies

About: Cooperative Institute for Meteorological Satellite Studies is a based out in . It is known for research contribution in the topics: Geostationary Operational Environmental Satellite & Moderate-resolution imaging spectroradiometer. The organization has 297 authors who have published 765 publications receiving 37772 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In the year 2000, the United Nations reported that 28.6 million km 2 of cropland (12% of the Earth's ice-free land surface) and 28.0 (90% confidence range of 23.6-30.0) million km2 of pasture (22%) were converted to pasture as mentioned in this paper.
Abstract: million km 2 of cropland (12% of the Earth’s ice-free land surface) and 28.0 (90% confidence range of 23.6–30.0) million km 2 of pasture (22%) in the year 2000.

1,647 citations

Journal ArticleDOI
TL;DR: The various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir are described.
Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of five instruments aboard the Terra Earth Observing System (EOS) platform launched in December 1999. After achieving final orbit, MODIS began Earth observations in late February 2000 and has been acquiring data since that time. The instrument is also being flown on the Aqua spacecraft, launched in May 2002. A comprehensive set of remote sensing algorithms for cloud detection and the retrieval of cloud physical and optical properties have been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir. An example of each Level-2 cloud product from a common data granule (5 min of data) off the coast of South America will be discussed. Future efforts will also be mentioned. Relevant points related to the global gridded statistics products (Level-3) are highlighted though additional details are given in an accompanying paper in this issue.

1,636 citations

Journal ArticleDOI
04 Sep 2008-Nature
TL;DR: The results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.
Abstract: Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 +/- 0.09 m s(-1) yr(-1) (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.

1,018 citations

Journal ArticleDOI
TL;DR: CALIPSO as mentioned in this paper is a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions for long-term atmospheric measurements from Earth's orbit.
Abstract: Aerosols and clouds have important effects on Earth's climate through their effects on the radiation budget and the cycling of water between the atmosphere and Earth's surface. Limitations in our understanding of the global distribution and properties of aerosols and clouds are partly responsible for the current uncertainties in modeling the global climate system and predicting climate change. The CALIPSO satellite was developed as a joint project between NASA and the French space agency CNES to provide needed capabilities to observe aerosols and clouds from space. CALIPSO carries CALIOP, a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions. CALIOP is the first lidar to provide long-term atmospheric measurements from Earth's orbit. Its profiling and polarization capabilities offer unique measurement capabilities. Launched together with the CloudSat satellite in April 2006 and now flying in formation with the A-train satellite constellation, CALIPSO is now providing information on the distribution and properties of aerosols and clouds, which is fundamental to advancing our understanding and prediction of climate. This paper provides an overview of the CALIPSO mission and instruments, the data produced, and early results.

845 citations

Journal ArticleDOI
TL;DR: Satellite-based maps of land cover and fire occurrence in the Brazilian Amazon were used to compare the performance of large uninhabited and inhabited reserves and found the inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density.
Abstract: Conservation scientists generally agree that many types of protected areas will be needed to protect tropical forests. But little is known of the comparative performance of inhabited and uninhabited reserves in slowing the most extreme form of forest disturbance: conversion to agriculture. We used satellite-based maps of land cover and fire occurrence in the Brazilian Amazon to compare the performance of large (>10,000 ha) un- inhabited (parks) and inhabited (indigenous lands, extractive reserves, and national forests) reserves. Reserves significantly reduced both deforestation and fire. Deforestation was 1.7 (extractive reserves) to 20 (parks) times higher along the outside versus the inside of the reserve perimeters and fire occurrence was 4 (indigenous lands) to 9 (national forests) times higher. No strong difference in the inhibition of deforestation (p = 0.11) or fire (p = 0.34) was found between parks and indigenous lands. However, uninhabited reserves tended to be located away from areas of high deforestation and burning rates. In contrast, indigenous lands were often created in re- sponse to frontier expansion, and many prevented deforestation completely despite high rates of deforestation along their boundaries. The inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density. Indigenous lands occupy one-fifth of the Brazilian Amazon—five times the area under protection in parks—and are currently the most important barrier to Amazon deforestation. As the protected-area network expands from 36% to 41% of the Brazilian Amazon over the coming years, the greatest challenge will be successful reserve implementation in high-risk areas of frontier expansion as indigenous lands are strengthened. This success will depend on a broad base of political support.

780 citations


Authors

Showing all 297 results

NameH-indexPapersCitations
Jun Li7079919510
Martha C. Anderson7034020288
William L. Smith5745112752
David D. Turner5429110121
James P. Kossin5414016400
Tristan L'Ecuyer501929430
Bryan A. Baum481538548
Andrew K. Heidinger481606124
W. Paul Menzel461639469
Jeffrey R. Key461507876
Steven A. Ackerman4513710418
Christopher S. Velden431596325
Rebecca Willett422567475
Ralf Bennartz411415072
Lance M. Leslie382454886
Network Information
Related Institutions (5)
European Centre for Medium-Range Weather Forecasts
2.9K papers, 215.7K citations

91% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

Geophysical Fluid Dynamics Laboratory
2.4K papers, 264.5K citations

89% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

88% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202137
202040
201940
201832
201755
201633