scispace - formally typeset
Search or ask a question
Institution

Desert Research Institute

NonprofitReno, Nevada, United States
About: Desert Research Institute is a nonprofit organization based out in Reno, Nevada, United States. It is known for research contribution in the topics: Aerosol & Ice core. The organization has 1247 authors who have published 3928 publications receiving 197886 citations. The organization is also known as: DRI.
Topics: Aerosol, Ice core, Snow, Ice crystals, Soil water


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: In this paper, the utility of several efficiency criteria is investigated in three examples using a simple observed streamflow hydrograph, and the selection and use of specific efficiency criteria and interpretation of the results can be a challenge for even the most experienced hydrologist since each criterion may place different emphasis on different types of simulated and observed behaviours.
Abstract: . The evaluation of hydrologic model behaviour and performance is commonly made and reported through comparisons of simulated and observed variables. Frequently, comparisons are made between simulated and measured streamflow at the catchment outlet. In distributed hydrological modelling approaches, additional comparisons of simulated and observed measurements for multi-response validation may be integrated into the evaluation procedure to assess overall modelling performance. In both approaches, single and multi-response, efficiency criteria are commonly used by hydrologists to provide an objective assessment of the "closeness" of the simulated behaviour to the observed measurements. While there are a few efficiency criteria such as the Nash-Sutcliffe efficiency, coefficient of determination, and index of agreement that are frequently used in hydrologic modeling studies and reported in the literature, there are a large number of other efficiency criteria to choose from. The selection and use of specific efficiency criteria and the interpretation of the results can be a challenge for even the most experienced hydrologist since each criterion may place different emphasis on different types of simulated and observed behaviours. In this paper, the utility of several efficiency criteria is investigated in three examples using a simple observed streamflow hydrograph.

2,375 citations

Journal ArticleDOI
TL;DR: In this article, a system of models for the simulation of gas and energy exchange of a leaf of a C3 plant in free air is presented, where the physiological processes are simulated by sub-models that: (a) give net photosynthesis (An) as a function of environmental and leaf parameters and stomatal conductance (gs); (b) give g, as well as the concentration of CO2 and H2O in air at the leaf surface and the current rate of photosynthesis of the leaf.

2,030 citations

Journal ArticleDOI
TL;DR: Meta-analysis is used to synthesize data on the response of soil respiration, net N mineralization, and aboveground plant productivity to experimental ecosystem warming at 32 research sites representing four broadly defined biomes, including high (latitude or altitude) tundra, low tundara, grassland, and forest.
Abstract: Climate change due to greenhouse gas emissions is predicted to raise the mean global temperature by 1.0–3.5°C in the next 50–100 years. The direct and indirect effects of this potential increase in temperature on terrestrial ecosystems and ecosystem processes are likely to be complex and highly varied in time and space. The Global Change and Terrestrial Ecosystems core project of the International Geosphere-Biosphere Programme has recently launched a Network of Ecosystem Warming Studies, the goals of which are to integrate and foster research on ecosystem-level effects of rising temperature. In this paper, we use meta-analysis to synthesize data on the response of soil respiration, net N mineralization, and aboveground plant productivity to experimental ecosystem warming at 32 research sites representing four broadly defined biomes, including high (latitude or altitude) tundra, low tundra, grassland, and forest. Warming methods included electrical heat-resistance ground cables, greenhouses, vented and unvented field chambers, overhead infrared lamps, and passive night-time warming. Although results from individual sites showed considerable variation in response to warming, results from the meta-analysis showed that, across all sites and years, 2–9 years of experimental warming in the range 0.3–6.0°C significantly increased soil respiration rates by 20% (with a 95% confidence interval of 18–22%), net N mineralization rates by 46% (with a 95% confidence interval of 30–64%), and plant productivity by 19% (with a 95% confidence interval of 15–23%). The response of soil respiration to warming was generally larger in forested ecosystems compared to low tundra and grassland ecosystems, and the response of plant productivity was generally larger in low tundra ecosystems than in forest and grassland ecosystems. With the exception of aboveground plant productivity, which showed a greater positive response to warming in colder ecosystems, the magnitude of the response of these three processes to experimental warming was not generally significantly related to the geographic, climatic, or environmental variables evaluated in this analysis. This underscores the need to understand the relative importance of specific factors (such as temperature, moisture, site quality, vegetation type, successional status, land-use history, etc.) at different spatial and temporal scales, and suggests that we should be cautious in "scaling up" responses from the plot and site level to the landscape and biome level. Overall, ecosystem-warming experiments are shown to provide valuable insights on the response of terrestrial ecosystems to elevated temperature.

1,988 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude.
Abstract: We present and discuss a new dataset of gridded emissions covering the historical period (1850–2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations.

1,953 citations


Authors

Showing all 1273 results

NameH-indexPapersCitations
Christopher B. Field13340888930
Li Chen105173255996
Yiqi Luo10455340963
Judith C. Chow9642732632
John G. Watson9345331379
Thomas D. Sharkey8926229969
Junji Cao8972135910
Richard J. Norby8623424476
Jianguo Wu7831931334
Jay Quade7724221391
Renyi Zhang7624220827
David L. Mitchell7539421299
Dale W. Johnson7127518547
Christopher D. Elvidge7020120221
David T. Tissue6928116057
Network Information
Related Institutions (5)
National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

90% related

United States Geological Survey
51K papers, 2.4M citations

90% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

90% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

University of Alaska Fairbanks
17K papers, 750.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202233
2021181
2020172
2019163
2018144