scispace - formally typeset
Search or ask a question
Institution

Eindhoven University of Technology

EducationEindhoven, Noord-Brabant, Netherlands
About: Eindhoven University of Technology is a education organization based out in Eindhoven, Noord-Brabant, Netherlands. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 22309 authors who have published 52936 publications receiving 1584164 citations. The organization is also known as: Technische Hogeschool Eindhoven & TU/e.


Papers
More filters
Journal ArticleDOI
TL;DR: Three different pi-conjugated oligomers have been functionalized with self-complementary quadruple hydrogen bonding ureidopyrimidinone (UPy) units at both ends, producing supramolecular polymers with a variety of compositions, high solution viscosities, and tuneable emission colors.
Abstract: Three different pi-conjugated oligomers (a blue-emitting oligofluorene, a green-emitting oligo(phenylene vinylene), and a red-emitting perylene bisimide) have been functionalized with self-complementary quadruple hydrogen bonding ureidopyrimidinone (UPy) units at both ends. The molecules self-assemble in solution and in the bulk, forming supramolecular polymers. When mixed together in solution, random noncovalent copolymers are formed that contain all three types of chromophores, resulting in energy transfer upon excitation of the oligofluorene energy donor. At a certain mixing ratio, a white emissive supramolecular polymer can be created in solution. In contrast to their unfunctionalized counterparts, bis-UPy-chromophores can easily be deposited as smooth thin films on surfaces by spin coating. No phase separation is observed in these films, and energy transfer is much more efficient than in solution, giving rise to white fluorescence at much lower ratios of energy acceptor to donor. Light emitting diodes based on these supramolecular polymers have been prepared from all three types of pure materials, yielding blue, green, and red devices, respectively. At appropriate mixing ratios of these three compounds, white electroluminescence is observed. This approach yields a toolbox of molecules that can be easily used to construct pi-conjugated supramolecular polymers with a variety of compositions, high solution viscosities, and tuneable emission colors.

354 citations

Journal ArticleDOI
TL;DR: In this article, transmission electron microscopy (TEM), dynamic oxygen chemisorption (DOC), and EXAFS were used to characterize supported MoS2 catalysts.

354 citations

Journal ArticleDOI
TL;DR: This critical review looks at how the functionalization of solid substrates by self-assembly processes provides the possibility to tailor their surface properties in a controllable fashion.
Abstract: In this critical review, we look at how the functionalization of solid substrates by self-assembly processes provides the possibility to tailor their surface properties in a controllable fashion. One class of molecules, which attracted significant attention during the past decades, are silanes self-assembled on hydroxyl terminated substrates, e.g. silicon and glass. These systems are physically and chemically robust and can be applied in various fields of technology, e.g., electronics, sensors, and others. The introduction of chemical functionalities in such monolayers can be generally obtained via two methods. This involves either the use of pre-functionalized molecules, which can be synthesized by different synthetic routes and subsequent self-assembly of these moieties on the surface. The second method utilizes chemical surface reactions for the modification of the monolayer. The latter method offers the possibility to apply a large variety of different organic reaction pathways on surfaces, which allows the introduction of a wide range of terminal end groups on well-defined base monolayers. In contrast to the first approach an important advantage is that the optimization of the reaction conditions for suitable precursor molecules is circumvented. The following review highlights a selection of chemical surface reactions, i.e., nucleophilic substitution, click chemistry and supramolecular modification, which have been used for the functionalization of solid substrates (80 references).

353 citations

Journal ArticleDOI
TL;DR: In this article, composites consisting of individual, or bundles of single-walled, exfoliated nanotubes in a highly viscous polymer matrix (see Figure) are described.
Abstract: Composites consisting of individual, or bundles of single-walled, exfoliated nanotubes in a highly viscous polymer matrix (see Figure) are described. The nanotubes and polymer are made compatible using surfactant molecules, hence avoiding the need for direct attraction between the nanotubes and the matrix. The resulting nanotube-polymer composites have a conductivity percolation threshold of 0.28 wt.-% nanotubes.

353 citations

Journal ArticleDOI
TL;DR: In this paper, simulated thermal desorption spectra have been used to test the performance of ten commonly applied analysis procedures for obtaining the correct activation energy, preexponential factor and order of desorptions, as a function of adsorbate coverage.

353 citations


Authors

Showing all 22539 results

NameH-indexPapersCitations
Hans Clevers199793169673
Richard H. Friend1691182140032
J. Fraser Stoddart147123996083
Jean-Luc Brédas134102685803
Ulrich S. Schubert122222985604
Christoph J. Brabec12089668188
Daniel I. Sessler11997360318
Can Li116104960617
Vikram Deshpande11173244038
D. Grahame Hardie10927653856
Wil M. P. van der Aalst10872542429
Jacob A. Moulijn10875447505
Vincent M. Rotello10876652473
Silvia Bordiga10749841413
David N. Reinhoudt107108248814
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022345
20212,907
20203,096
20192,584