scispace - formally typeset
Search or ask a question
Institution

Novartis

CompanyBasel, Switzerland
About: Novartis is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Alkyl & Population. The organization has 41930 authors who have published 50566 publications receiving 1978996 citations. The organization is also known as: Novartis International AG.
Topics: Alkyl, Population, Alkoxy group, Receptor, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The Stuttgart Neural Net Simulator was used to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system and BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent si RNAs per gene.
Abstract: The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.66) and siRNAs targeting endogenous genes at mRNA and protein levels. Neural networks trained on a complementary 21-nucleotide (nt) guide sequence were superior to those trained on a 19-nt sequence. BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent siRNAs per gene. When this collection of 50,000 siRNAs was used to identify genes involved in the cellular response to hypoxia, two of the most potent hits were the key hypoxia transcription factors HIF1A and ARNT.

380 citations

Journal ArticleDOI
TL;DR: Some of the major applications of NMR in drug discovery, focusing on hit and lead generation, are highlighted, and a critical analysis of its current and potential utility is provided.
Abstract: In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility.

379 citations

Journal ArticleDOI
TL;DR: Low-mode search (LMOD) as discussed by the authors is based on eigenvector following (or mode following) for the exhaustive exploration of the potential energy hypersurface of molecules, which is particularly efficient at searching the conformational space of both cyclic and acyclic molecules.
Abstract: The location of energy minima on the conformational energy surface of molecules by computational methods (conformational searching) continues to play a key role in computer-assisted molecular modeling. Although a number of conformational search procedures have been devised over the past several years, new more efficient methods are urgently needed if molecules with increased complexity are to be treated in a quantitative manner. In this paper we describe a method, termed low-mode search (LMOD), which is based on eigenvector following (or mode following), for the exhaustive exploration of the potential energy hypersurface of molecules. It is particularly efficient at searching the conformational space of both cyclic and acyclic molecules, and we describe its effectiveness for a number of conformational search problems including acyclic, monocyclic, and bicyclic hydrocarbons and cyclic pentapeptides. No special treatment of rings in cyclic molecules is necessary, nor is it necessary to define rotatable bond...

379 citations

Journal ArticleDOI
12 Dec 2013-Nature
TL;DR: It is shown that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate.
Abstract: Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

379 citations


Authors

Showing all 41972 results

NameH-indexPapersCitations
Irving L. Weissman2011141172504
Peter J. Barnes1941530166618
Paul G. Richardson1831533155912
Kenneth C. Anderson1781138126072
Jie Zhang1784857221720
Lei Jiang1702244135205
Marc A. Pfeffer166765133043
Jorge E. Cortes1632784124154
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Bruce D. Walker15577986020
Timothy P. Hughes14583191357
Kurt Wüthrich143739103253
Leonard Guarente14335280169
Christopher D.M. Fletcher13867482484
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

97% related

Merck & Co.
48K papers, 1.9M citations

97% related

GlaxoSmithKline
21.1K papers, 1.1M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

96% related

Genentech
17.1K papers, 1.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202285
20211,321
20201,377
20191,376
20181,456