scispace - formally typeset
Search or ask a question
Institution

Remote Sensing Center

Education
About: Remote Sensing Center is a based out in . It is known for research contribution in the topics: Sea ice & Data assimilation. The organization has 1461 authors who have published 1796 publications receiving 48240 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias, and an ensemble based optimal interpolation scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

3,403 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that the observations must be treated as random variables at the analysis steps, which results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method.
Abstract: This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter. It is shown that the observations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the observations and generate an ensemble of observations that then is used in updating the ensemble of model states. Traditionally, this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low. This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach.

1,801 citations

Journal ArticleDOI
TL;DR: The Extended Reconstructed Sea Surface Temperature (ERSST) dataset has been revised to version 4 (v4) from v3b.v4 as discussed by the authors, which makes SST 0.1°-0.2°C warmer south of 30°S in ERSST.
Abstract: The monthly Extended Reconstructed Sea Surface Temperature (ERSST) dataset, available on global 2° × 2° grids, has been revised herein to version 4 (v4) from v3b. Major revisions include updated and substantially more complete input data from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) release 2.5; revised empirical orthogonal teleconnections (EOTs) and EOT acceptance criterion; updated sea surface temperature (SST) quality control procedures; revised SST anomaly (SSTA) evaluation methods; updated bias adjustments of ship SSTs using the Hadley Centre Nighttime Marine Air Temperature dataset version 2 (HadNMAT2); and buoy SST bias adjustment not previously made in v3b.Tests show that the impacts of the revisions to ship SST bias adjustment in ERSST.v4 are dominant among all revisions and updates. The effect is to make SST 0.1°–0.2°C cooler north of 30°S but 0.1°–0.2°C warmer south of 30°S in ERSST.v4 than in ERSST.v3b before 1940. In comparison with the Met Office SST product...

940 citations

Journal ArticleDOI
01 Aug 2004-Tellus A
TL;DR: In this article, a set of century and multidecadal-scale observational data of surface air temperature (SAT) and sea ice is used in combination with ECHAM4 and HadCM3 coupled atmosphere-ice-ocean global model simulations in order to better determine and understand arctic climate variability.
Abstract: Changes apparent in the arctic climate system in recent years require evaluation in a century-scale perspective in order to assess the Arctic’s response to increasing anthropogenic greenhouse-gas forcing. Here, a new set of centuryand multidecadal-scale observational data of surface air temperature (SAT) and sea ice is used in combination with ECHAM4 and HadCM3 coupled atmosphere‐ice‐ocean global model simulations in order to better determine and understand arctic climate variability. We show that two pronounced twentieth-century warming events, both amplified in the Arctic, were linked to sea-ice variability. SAT observations and model simulations indicate that the nature of the arctic warming in the last two decades is distinct from the early twentieth-century warm period. It is suggested strongly that the earlier warming was natural internal climate-system variability, whereas the recent SAT changes are a response to anthropogenic forcing. The area of arctic sea ice is furthermore observed to have decreased ∼8 × 10 5 km 2 (7.4%) in the past quarter century, with record-low summer ice coverage in September 2002. A set of model predictions is used to quantify changes in the ice cover through the twenty-first century, with greater reductions expected in summer than winter. In summer, a predominantly sea-ice-free Arctic is predicted for the end of this century.

771 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
Yang Yang1712644153049
Lin Liu7893724389
Eystein Jansen6114011801
Leung Tsang6058917431
Lennart Bengtsson5521013109
Noel Keenlyside5417611671
Helge Drange451168644
Peter Thorne441259925
Sergej Zilitinkevich421585418
Johnny A. Johannessen412015789
Geir Evensen4110020012
Ola M. Johannessen412047028
Vinay Kumar Dadhwal403226217
K. V. S. Badarinath401484930
Miguel D. Mahecha391269328
Network Information
Related Institutions (5)
China University of Geosciences (Wuhan)
27.1K papers, 417.2K citations

80% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

80% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

80% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

79% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202244
2021132
2020117
2019116
2018105