scispace - formally typeset
Search or ask a question
Institution

Sea Education Association

NonprofitFalmouth, Massachusetts, United States
About: Sea Education Association is a nonprofit organization based out in Falmouth, Massachusetts, United States. It is known for research contribution in the topics: Marine debris & Sargassum. The organization has 68 authors who have published 96 publications receiving 18079 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, this work presents the first global analysis of all mass-produced plastics ever manufactured.
Abstract: Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

7,707 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: This work combines available data on solid waste with a model that uses population density and economic status to estimate the amount of land-based plastic waste entering the ocean, which is estimated to be 275 million metric tons.
Abstract: Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.

6,689 citations

Journal ArticleDOI
TL;DR: Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer, implying that plastic serves as a novel ecological habitat in the open ocean.
Abstract: Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the “Plastisphere”. Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vib...

1,789 citations

Journal ArticleDOI
03 Sep 2010-Science
TL;DR: Results from 22 years of plankton tows in the North Atlantic showed the pattern of plastics accumulation was indeed as predicted by theories of ocean circulation, but, despite the steady increase in plastic production and disposal, the concentration of plastic debris had not increased and no trend in plastic concentration was observed in the region of highest accumulation.
Abstract: Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

1,074 citations

Journal ArticleDOI
TL;DR: This paper used a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations.
Abstract: Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.

979 citations


Network Information
Related Institutions (5)
Scripps Institution of Oceanography
7.8K papers, 487.4K citations

75% related

IFREMER
12.3K papers, 468.8K citations

75% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

74% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

74% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

71% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20221
20218
20209
20197
20183