scispace - formally typeset
Search or ask a question
Institution

University of Hertfordshire

EducationHatfield, United Kingdom
About: University of Hertfordshire is a education organization based out in Hatfield, United Kingdom. It is known for research contribution in the topics: Galaxy & Population. The organization has 14455 authors who have published 23821 publications receiving 768488 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new parameter lambda(R) equivalent to /, which involves luminosity-weighted averages over the full two-dimensional kinematic field as a proxy to quantify the observed projected stellar angular momentum per unit mass, was defined.
Abstract: Two-dimensional stellar kinematics of 48 representative elliptical (E) and lenticular (S0) galaxies obtained with the SAURON integral-field spectrograph reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We define a new parameter lambda(R) equivalent to / , which involves luminosity-weighted averages over the full two-dimensional kinematic field as a proxy to quantify the observed projected stellar angular momentum per unit mass. We use it as a basis for a new kinematic classification: early-type galaxies are separated into slow and fast rotators, depending on whether they have lambda(R) values within their effective radius R(e) below or above 0.1, respectively. Slow and fast rotators are shown to be physically distinct classes of galaxies, a result which cannot simply be the consequence of a biased viewing angle. Fast rotators tend to be relatively low-luminosity galaxies with M(B) greater than or similar to-20.5. Slow rotators tend to be brighter and more massive galaxies, but are still spread over a wide range of absolute magnitude. Three slow rotators of our sample, among the most massive ones, are consistent with zero rotation. Remarkably, all other slow rotators (besides the atypical case of NGC 4550) contain a large kpc-scale kinematically decoupled core (KDC). All fast rotators (except one galaxy with well-known irregular shells) show well-aligned photometric and kinemetric axes, and small velocity twists, in contrast with most slow rotators which exhibit significant misalignments and velocity twists. These results are supported by a supplement of 18 additional early-type galaxies observed with SAURON. In a companion paper (Paper X), we also show that fast and slow rotators are distinct classes in terms of their orbital distribution. We suggest that gas is a key ingredient in the formation and evolution of fast rotators, and that the slowest rotators are the extreme evolutionary end point reached deep in gravitational potential wells where dissipationless mergers had a major role in the evolution, and for which most of the baryonic angular momentum was expelled outwards. Detailed numerical simulations in a cosmological context are required to understand how to form large-scale KDCs within slow rotators, and more generally to explain the distribution of lambda(R) values within early-type galaxies and the distinction between fast and slow rotators.

766 citations

Journal ArticleDOI
TL;DR: These data provide an extensive analysis of GAPDH mRNA expression in human tissues and confirm previous reports of the marked variability ofGAPDH expression between tissue types.
Abstract: Quantitative gene expression data are often normalized to the expression levels of control or so-called “housekeeping” genes. An inherent assumption in the use of housekeeping genes is that express...

755 citations

Journal ArticleDOI
Sergio Molinari1, B. Swinyard, John Bally2, M. J. Barlow3, J.-P. Bernard4, Paul Martin5, Toby J. T. Moore6, Alberto Noriega-Crespo7, Rene Plume8, Leonardo Testi1, Leonardo Testi9, Annie Zavagno10, Alain Abergel11, Babar Ali7, L. D. Anderson10, Ph. André12, J.-P. Baluteau10, Cara Battersby2, M. T. Beltrán1, M. Benedettini1, N. Billot7, J. A. D. L. Blommaert13, Sylvain Bontemps14, Sylvain Bontemps12, F. Boulanger11, Jan Brand1, Christopher M. Brunt15, Michael G. Burton16, Luca Calzoletti, Sean Carey7, Paola Caselli17, Riccardo Cesaroni1, José Cernicharo18, Sukanya Chakrabarti, Antonio Chrysostomou, Martin Cohen, Mathieu Compiegne5, P. de Bernardis19, G. de Gasperis20, A. M. di Giorgio1, Davide Elia1, F. Faustini, Nicolas Flagey7, Yasuo Fukui21, Gary A. Fuller22, K. Ganga23, Pedro García-Lario, Jason Glenn2, Paul F. Goldsmith24, Matthew Joseph Griffin25, Melvin Hoare17, Maohai Huang26, D. Ikhenaode19, C. Joblin4, G. Joncas27, Mika Juvela28, Jason M. Kirk25, Guilaine Lagache11, Jin-Zeng Li26, T. L. Lim, S. D. Lord7, Massimo Marengo29, Douglas J. Marshall4, Silvia Masi19, Fabrizio Massi1, Mikako Matsuura3, Vincent Minier12, Marc-Antoine Miville-Deschenes11, L. Montier4, L. K. Morgan6, Frédérique Motte12, Joseph C. Mottram15, T. G. Müller30, Paolo Natoli20, J. Neves31, Luca Olmi1, Roberta Paladini7, Deborah Paradis7, Harriet Parsons31, Nicolas Peretto22, Nicolas Peretto12, M. R. Pestalozzi1, Stefano Pezzuto1, F. Piacentini19, Lorenzo Piazzo19, D. Polychroni1, M. Pomarès10, Cristina Popescu30, William T. Reach7, Isabelle Ristorcelli4, Jean-François Robitaille27, Thomas P. Robitaille29, J. A. Rodón10, A. Roy5, Pierre Royer13, D. Russeil10, Paolo Saraceno1, Marc Sauvage12, Peter Schilke32, Eugenio Schisano1, Nicola Schneider12, Frederic Schuller, Benjamin L. Schulz7, B. Sibthorpe25, Hazel Smith29, Michael D. Smith33, L. Spinoglio1, Dimitrios Stamatellos25, Francesco Strafella, Guy S. Stringfellow2, E. Sturm30, R. Taylor8, Mark Thompson31, Alessio Traficante20, Richard J. Tuffs30, Grazia Umana1, Luca Valenziano1, R. Vavrek, M. Veneziani19, Serena Viti3, C. Waelkens13, Derek Ward-Thompson25, Glenn J. White34, L. A. Wilcock25, Friedrich Wyrowski, Harold W. Yorke24, Qizhou Zhang29 
TL;DR: In this paper, the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands, were presented.
Abstract: We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2° × 2° tiles approximately centered at l = 30° and l = 59°. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around AV ~ 1 is exceeded for the regions in the l = 59° field; a AV value between 5 and 10 is found for the l = 30° field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.

752 citations

Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission are reported, finding that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities.
Abstract: The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets(1-4), supporting the model that planets form by accumulation of dust and ice particles(5). Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets(4,6-9). However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission(10), including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

743 citations

Journal ArticleDOI
TL;DR: The novel observation has been made that ACE 2 shows comparably high levels of expression in the gastrointestinal system, in particular in ileum, duodenum, jejunum, caecum and colon.

730 citations


Authors

Showing all 14539 results

NameH-indexPapersCitations
Rob Ivison1661161102314
Pete Smith1562464138819
Matt J. Jarvis144106485559
Geoffrey Burnstock141148899525
Stephen R. Bloom13474771493
David P. Lane12956890787
David M. Alexander12565260686
David J. Smith1252090108066
Anthony Howell12071455075
J. H. Hough11790489697
Christine H. Foyer11649061381
Steve P. McGrath11548346326
Nial R. Tanvir11287753784
John M. Davis11079051526
P. van der Werf10753235342
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

92% related

University of Birmingham
115.3K papers, 4.3M citations

91% related

University College London
210.6K papers, 9.8M citations

91% related

University of Manchester
168K papers, 6.4M citations

91% related

University of Bristol
113.1K papers, 4.9M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022166
20211,198
20201,113
20191,030
20181,050