scispace - formally typeset
Search or ask a question
Institution

University of León

EducationLeón, Spain
About: University of León is a education organization based out in León, Spain. It is known for research contribution in the topics: Population & Gene. The organization has 4984 authors who have published 9933 publications receiving 202106 citations. The organization is also known as: Universidad de León & University of Leon.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
29 Jun 2000
TL;DR: Pharmacokinetics of ivermectin after IV administration were best described by a 2-compartment open model; values for main compartmental variables included volume of distribution at a steady state, area under the plasma concentration-time curve, and area underThe AUC curve.
Abstract: Objective—To evaluate the pharmacokinetics of a novel commercial formulation of ivermectin after administration to goats. Animals—6 healthy adult goats. Procedure—Ivermectin (200 μg/kg) was initially administered IV to each goat, and plasma samples were obtained for 36 days. After a washout period of 3 weeks, each goat received a novel commercial formulation of ivermectin (200 μg/kg) by SC injection. Plasma samples were then obtained for 42 days. Drug concentrations were quantified by use of high-performance liquid chromatography with fluorescence detection. Results—Pharmacokinetics of ivermectin after IV administration were best described by a 2-compartment open model; values for main compartmental variables included volume of distribution at a steady state (9.94 L/kg), clearance (1.54 L/kg/d), and area under the plasma concentration-time curve (AUC; 143 [ng•d]/mL). Values for the noncompartmental variables included mean residence time (7.37 days), AUC (153 [ng•d]/mL), and clearance (1.43 L/kg/d). After ...

2,794 citations

Journal ArticleDOI
TL;DR: The molecular determinants of Listeria virulence and their mechanism of action are described and the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listersia infection is summarized.
Abstract: The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.

2,139 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: This article is a comprehensive exploration of all of the major unmixing approaches and their applications and concludes that no single approach is optimal and applicable to all cases.
Abstract: Satellite imagery is formed by finite digital numbers representing a specific location of ground surface in which each matrix element is denominated as a picture element or pixel. The pixels represent the sensor measurements of spectral radiance. The radiance recorded in the satellite images is then an integrated sum of the radiances of all targets within the instantaneous field of view IFOV of the sensors. Therefore, the radiation detected is caused by a mixture of several different materials within the image pixels. For this reason, spectral unmixing has been used as a technique for analysing the mixture of components in remotely sensed images for almost 30 years. Different spectral unmixing approaches have been described in the literature. In recent years, many authors have proposed more complex models that permit obtaining a higher accuracy and use less computing time. Although the most widely used method consists of employing a single set of endmembers typically three or four on the whole image and using a constrained least squares method to perform the unmixing linearly, every different algorithm has its own merits and no single approach is optimal and applicable to all cases. Additionally, the number of applications using unmixing techniques is increasing. Spectral unmixing techniques are used mainly for providing information to monitor different natural resources agricultural, forest, geological, etc. and environmental problems erosion, deforestation, plagues and disease, forest fires, etc.. This article is a comprehensive exploration of all of the major unmixing approaches and their applications.

764 citations


Authors

Showing all 5035 results

NameH-indexPapersCitations
Andrew Y. Ng130345164995
Alfred Pühler10265845871
Marcos Malumbres6721123718
Javier González-Gallego6628113129
Jörn Kalinowski6345217859
Juan F. Martín6335613810
Denis Fouque6137417101
Juan Antonio García6029712237
Lucas Domínguez5543311580
Carlos Martin5420012790
Andreas Tauch5420011887
Jose J.G. Marin492809080
R. W. Allard499714917
Encarna Velázquez492278831
Enrique Monte481187868
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

91% related

Autonomous University of Barcelona
80.5K papers, 2.3M citations

90% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

89% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

University of Valencia
65.6K papers, 1.7M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202289
2021783
2020728
2019653
2018564