scispace - formally typeset
Search or ask a question
Institution

University of Maryland Center for Environmental Science

EducationCambridge, Maryland, United States
About: University of Maryland Center for Environmental Science is a education organization based out in Cambridge, Maryland, United States. It is known for research contribution in the topics: Population & Estuary. The organization has 1597 authors who have published 3590 publications receiving 202400 citations. The organization is also known as: Center for Environmental and Estuarine Studies & UMCES.


Papers
More filters
Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A consistent temperature-related shift is revealed in species ranging from molluscs to mammals and from grasses to trees, suggesting that a significant impact of global warming is already discernible in animal and plant populations.
Abstract: Over the past 100 years, the global average temperature has increased by approximately 0.6 °C and is projected to continue to rise at a rapid rate1. Although species have responded to climatic changes throughout their evolutionary history2, a primary concern for wild species and their ecosystems is this rapid rate of change3. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or ‘fingerprint’, in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.

4,532 citations

Journal ArticleDOI
TL;DR: In this paper, the main ecological services across a variety of estuarine and coastal ecosystems (ECEs) including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes are reviewed.
Abstract: The global decline in estuarine and coastal ecosystems (ECEs) is affecting a number of critical benefits, or ecosystem services. We review the main ecological services across a variety of ECEs, including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes. Where possible, we indicate estimates of the key economic values arising from these services, and discuss how the natural variability of ECEs impacts their benefits, the synergistic relationships of ECEs across seascapes, and management implications. Although reliable valuation estimates are beginning to emerge for the key services of some ECEs, such as coral reefs, salt marshes, and mangroves, many of the important benefits of seagrass beds and sand dunes and beaches have not been assessed properly. Even for coral reefs, marshes, and mangroves, important ecological services have yet to be valued reliably, such as cross-ecosystem nutrient transfer (coral reefs), erosion control (marshes), and pollution control (mangroves). An important issue for valuing certain ECE services, such as coastal protection and habitat-fishery linkages, is that the ecological functions underlying these services vary spatially and temporally. Allowing for the connectivity between ECE habitats also may have important implications for assessing the ecological functions underlying key ecosystems services, such coastal protection, control of erosion, and habitat-fishery linkages. Finally, we conclude by suggesting an action plan for protecting and/or enhancing the immediate and longer-term values of ECE services. Because the connectivity of ECEs across land-sea gradients also influences the provision of certain ecosystem services, management of the entire seascape will be necessary to preserve such synergistic effects. Other key elements of an action plan include further ecological and economic collaborative research on valuing ECE services, improving institutional and legal frameworks for management, controlling and regulating destructive economic activities, and developing ecological restoration options.

3,750 citations

Journal ArticleDOI
20 Feb 2009-Science
TL;DR: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.
Abstract: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.

2,773 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a targeted global conservation effort that includes a reduction of watershed nutrient and sediment inputs to seagrass habitats and a targeted educational program informing regulators and the public of the value of meadows.
Abstract: Seagrasses, marine flowering plants, have a long evolutionary history but are now challenged with rapid environmental changes as a result of coastal human population pressures. Seagrasses provide key ecological services, including organic carbon production and export, nutrient cycling, sediment stabilization, enhanced biodiversity, and trophic transfers to adjacent habitats in tropical and temperate regions. They also serve as “coastal canaries,” global biological sentinels of increasing anthropogenic influences in coastal ecosystems, with large-scale losses reported worldwide. Multiple stressors, including sediment and nutrient runoff, physical disturbance, invasive species, disease, commercial fishing practices, aquaculture, overgrazing, algal blooms, and global warming, cause seagrass declines at scales of square meters to hundreds of square kilometers. Reported seagrass losses have led to increased awareness of the need for seagrass protection, monitoring, management, and restoration. However, seagrass science, which has rapidly grown, is disconnected from public awareness of seagrasses, which has lagged behind awareness of other coastal ecosystems. There is a critical need for a targeted global conservation effort that includes a reduction of watershed nutrient and sediment inputs to seagrass habitats and a targeted educational program informing regulators and the public of the value of seagrass meadows.

2,645 citations


Authors

Showing all 1608 results

NameH-indexPapersCitations
Robert Costanza11449480285
Peter M. Groffman10645740165
Eric A. Davidson10128145511
Gretchen C. Daily9625656204
Feng Chen95213853881
Ronald A. Hites8936529201
Xin Zhang87171440102
Margaret A. Palmer8417925474
Pamela A. Matson8218848741
Robert J. Letcher8041122778
David O. Carpenter8050551473
Robert P. Mason7923022515
Stephen H. Schneider7522437706
Heather M. Stapleton7426516847
Douglas G. Capone7421224134
Network Information
Related Institutions (5)
National Marine Fisheries Service
7K papers, 305K citations

93% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

92% related

IFREMER
12.3K papers, 468.8K citations

92% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

90% related

National Institute of Water and Atmospheric Research
6.1K papers, 267.8K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202242
2021285
2020267
2019245
2018224