scispace - formally typeset
Search or ask a question
Institution

University of New Orleans

EducationNew Orleans, Louisiana, United States
About: University of New Orleans is a education organization based out in New Orleans, Louisiana, United States. It is known for research contribution in the topics: Ab initio & Population. The organization has 4483 authors who have published 9840 publications receiving 345573 citations. The organization is also known as: UNO.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this article, the introduction of invasive species and identifying life history stages where management will be most effective are discussed. And evolutionary processes may be key features in determining whether invasive species establish and spread.
Abstract: ■ Abstract Contributions from the field of population biology hold promise for understanding and managing invasiveness; invasive species also offer excellent opportunities to study basic processes in population biology. Life history studies and demographic models may be valuable for examining the introduction of invasive species and identifying life history stages where management will be most effective. Evolutionary processes may be key features in determining whether invasive species establish and spread. Studies of genetic diversity and evolutionary changes should be useful for

3,280 citations

Journal ArticleDOI
01 May 2011
TL;DR: Hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages shows that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana.
Abstract: The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

2,672 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations


Authors

Showing all 4527 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Elinor Ostrom126430104959
Ray H. Baughman11061660009
Steven P. Nolan11074447671
Feng Li10499560692
Andrew V. Schally102110750314
Stephen P. Hubbell10124941904
Paul J. Frick10030633579
F. Xavier Castellanos9623642904
Tetsuo Nagano9649034267
Feng Chen95213853881
Muhammad Farooq92134137533
Nicolas G. Bazan9160537729
Peter Politzer9046033894
Dmitri V. Talapin9030339572
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Florida State University
65.3K papers, 2.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

University of South Carolina
59.9K papers, 2.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202274
2021256
2020228
2019238
2018228