scispace - formally typeset
Search or ask a question
JournalISSN: 0046-5070

Freshwater Biology 

Wiley-Blackwell
About: Freshwater Biology is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Population & Species richness. It has an ISSN identifier of 0046-5070. Over the lifetime, 6191 publications have been published receiving 360507 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology.
Abstract: Numerical and statistical methods have rapidly become part of a palaeolimnologist’s tool-kit. They are used to explore and summarise complex data, reconstruct past environmental variables from fossil assemblages, and test competing hypotheses about the causes of observed changes in lake biota through history. This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology.

1,827 citations

Journal ArticleDOI
TL;DR: In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, this paper reviewed 165 papers published over the last four decades, with a focus on more recent papers.
Abstract: Summary 1. In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2. For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ‘qualitative’ or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3. Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4. Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5. New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration–ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration.

1,761 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new approach for setting streamflow-based river ecosystem management targets and this method is called the "Range of Variability Approach" (RVA), which derives from aquatic ecology theory concerning the critical role of hydrological variability, and associated characteristics of timing, frequency, duration and rates of change, in sustaining aquatic ecosystems.
Abstract: > * SUMMARY 1. This paper introduces a new approach for setting streamflow-based river ecosystem management targets and this method is called the 'Range of Variability Approach' (RVA). The proposed approach derives from aquatic ecology theory concerning the critical role of hydrological variability, and associated characteristics of timing, frequency, duration, and rates of change, in sustaining aquatic ecosystems. The method is intended for application on rivers wherein the conservation of native aquatic biodiversity and protection of natural ecosystem functions are primary river management objectives. 2. The RVA uses as its starting point either measured or synthesized daily streamflow values from a period during which human perturbations to the hydrological regime were negligible. This streamflow record is then characterized using thirty-two different hydrological parameters, using methods defined in Richter et al. (1996). Using the RVA, a range of variation in each of the thirty-two parameters, e.g. the values at t 1 standard deviation from the mean or the twenty-fifth to seventy-fifth percentile range, are selected as initial flow management targets. 3. The RVA targets are intended to guide the design of river management strategies (e.g. reservoir operations rules, catchment restoration) that will lead to attainment of these targets on an annual basis. The RVA will enable river managers to define and adopt readily interim management targets before conclusive, long-term ecosystem research results are available. The RVA targets and management strategies should be adaptively refined as suggested by research results and as needed to sustain native aquatic ecosystem biodiversity and integrity.

1,474 citations

Journal ArticleDOI
TL;DR: In this paper, different river thermal processes responsible for water temperature variability on both the temporal (e.g. diel, daily, seasonal) and spatial scales, as well as providing information related to different water temperature models currently found in the literature are reviewed.
Abstract: Summary 1. The thermal regime of rivers plays an important role in the overall health of aquatic ecosystems, including water quality issues and the distribution of aquatic species within the river environment. Consequently, for conducting environmental impact assessments as well as for effective fisheries management, it is important to understand the thermal behaviour of rivers and related heat exchange processes. 2. This study reviews the different river thermal processes responsible for water temperature variability on both the temporal (e.g. diel, daily, seasonal) and spatial scales, as well as providing information related to different water temperature models currently found in the literature. 3. Water temperature models are generally classified into three groups: regression, stochastic and deterministic models. Deterministic models employ an energy budget approach to predict river water temperature, whereas regression and stochastic models generally rely on air to water temperature relationships. 4. Water temperature variability can occur naturally or as a result of anthropogenic perturbations, such as thermal pollution, deforestation, flow modification and climate change. Literature information is provided on the thermal regime of rivers in relation to anthropogenic impacts and such information will contribute to the better protection of fish habitat and more efficient fisheries management.

1,430 citations

Journal ArticleDOI
TL;DR: The ecological limits of hydrologic alteration (ELOHA) as mentioned in this paper is a framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale.
Abstract: SUMMARY 1. The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows

1,408 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202394
2022178
2021195
2020175
2019170
2018130