scispace - formally typeset
Search or ask a question
JournalISSN: 0941-0643

Neural Computing and Applications 

Springer Science+Business Media
About: Neural Computing and Applications is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Computer science & Artificial neural network. It has an ISSN identifier of 0941-0643. Over the lifetime, 8823 publications have been published receiving 174986 citations. The journal is also known as: Neural computing and applications (Print) & Neural computing and applications (Internet).


Papers
More filters
Journal ArticleDOI
TL;DR: The results of DA and BDA prove that the proposed algorithms are able to improve the initial random population for a given problem, converge towards the global optimum, and provide very competitive results compared to other well-known algorithms in the literature.
Abstract: A novel swarm intelligence optimization technique is proposed called dragonfly algorithm (DA). The main inspiration of the DA algorithm originates from the static and dynamic swarming behaviours of dragonflies in nature. Two essential phases of optimization, exploration and exploitation, are designed by modelling the social interaction of dragonflies in navigating, searching for foods, and avoiding enemies when swarming dynamically or statistically. The paper also considers the proposal of binary and multi-objective versions of DA called binary DA (BDA) and multi-objective DA (MODA), respectively. The proposed algorithms are benchmarked by several mathematical test functions and one real case study qualitatively and quantitatively. The results of DA and BDA prove that the proposed algorithms are able to improve the initial random population for a given problem, converge towards the global optimum, and provide very competitive results compared to other well-known algorithms in the literature. The results of MODA also show that this algorithm tends to find very accurate approximations of Pareto optimal solutions with high uniform distribution for multi-objective problems. The set of designs obtained for the submarine propeller design problem demonstrate the merits of MODA in solving challenging real problems with unknown true Pareto optimal front as well. Note that the source codes of the DA, BDA, and MODA algorithms are publicly available at http://www.alimirjalili.com/DA.html.

1,897 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer, based on three concepts in cosmology: white hole, black hole, and wormhole, which outperforms the best algorithms in the literature on the majority of the test beds.
Abstract: This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer (MVO). The main inspirations of this algorithm are based on three concepts in cosmology: white hole, black hole, and wormhole. The mathematical models of these three concepts are developed to perform exploration, exploitation, and local search, respectively. The MVO algorithm is first benchmarked on 19 challenging test problems. It is then applied to five real engineering problems to further confirm its performance. To validate the results, MVO is compared with four well-known algorithms: Grey Wolf Optimizer, Particle Swarm Optimization, Genetic Algorithm, and Gravitational Search Algorithm. The results prove that the proposed algorithm is able to provide very competitive results and outperforms the best algorithms in the literature on the majority of the test beds. The results of the real case studies also demonstrate the potential of MVO in solving real problems with unknown search spaces. Note that the source codes of the proposed MVO algorithm are publicly available at http://www.alimirjalili.com/MVO.html.

1,752 citations

Journal ArticleDOI
TL;DR: This paper reviews theories developed to understand the properties and behaviors of multi-view learning and gives a taxonomy of approaches according to the machine learning mechanisms involved and the fashions in which multiple views are exploited.
Abstract: Multi-view learning or learning with multiple distinct feature sets is a rapidly growing direction in machine learning with well theoretical underpinnings and great practical success. This paper reviews theories developed to understand the properties and behaviors of multi-view learning and gives a taxonomy of approaches according to the machine learning mechanisms involved and the fashions in which multiple views are exploited. This survey aims to provide an insightful organization of current developments in the field of multi-view learning, identify their limitations, and give suggestions for further research. One feature of this survey is that we attempt to point out specific open problems which can hopefully be useful to promote the research of multi-view machine learning.

782 citations

Journal ArticleDOI
TL;DR: A comparative study with five other metaheuristic algorithms through thirty-eight benchmark problems is carried out, and the results clearly exhibit the capability of the MBO method toward finding the enhanced function values on most of the benchmark problems with respect to the other five algorithms.
Abstract: In nature, the eastern North American monarch population is known for its southward migration during the late summer/autumn from the northern USA and southern Canada to Mexico, covering thousands of miles. By simplifying and idealizing the migration of monarch butterflies, a new kind of nature-inspired metaheuristic algorithm, called monarch butterfly optimization (MBO), a first of its kind, is proposed in this paper. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. southern Canada and the northern USA (Land 1) and Mexico (Land 2). Accordingly, the positions of the monarch butterflies are updated in two ways. Firstly, the offsprings are generated (position updating) by migration operator, which can be adjusted by the migration ratio. It is followed by tuning the positions for other butterflies by means of butterfly adjusting operator. In order to keep the population unchanged and minimize fitness evaluations, the sum of the newly generated butterflies in these two ways remains equal to the original population. In order to demonstrate the superior performance of the MBO algorithm, a comparative study with five other metaheuristic algorithms through thirty-eight benchmark problems is carried out. The results clearly exhibit the capability of the MBO method toward finding the enhanced function values on most of the benchmark problems with respect to the other five algorithms. Note that the source codes of the proposed MBO algorithm are publicly available at GitHub ( https://github.com/ggw0122/Monarch-Butterfly-Optimization , C++/MATLAB) and MATLAB Central ( http://www.mathworks.com/matlabcentral/fileexchange/50828-monarch-butterfly-optimization , MATLAB).

778 citations

Journal ArticleDOI
TL;DR: The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.
Abstract: Pattern classification has been successfully applied in many problem domains, such as biometric recognition, document classification or medical diagnosis. Missing or unknown data are a common drawback that pattern recognition techniques need to deal with when solving real-life classification tasks. Machine learning approaches and methods imported from statistical learning theory have been most intensively studied and used in this subject. The aim of this work is to analyze the missing data problem in pattern classification tasks, and to summarize and compare some of the well-known methods used for handling missing values.

625 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023589
20221,538
20211,559
20201,211
2019736
2018573