scispace - formally typeset
Search or ask a question
JournalISSN: 0378-2697

Plant Systematics and Evolution 

Springer Science+Business Media
About: Plant Systematics and Evolution is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Population & Pollen. It has an ISSN identifier of 0378-2697. Over the lifetime, 4509 publications have been published receiving 112916 citations. The journal is also known as: Pl. Syst. Evol..


Papers
More filters
Journal ArticleDOI
TL;DR: Strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies is found, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets.
Abstract: Phylogenetic relationships among 88 genera of Rosaceae were investigated using nucleotide sequence data from six nuclear (18S, gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and likelihood-based Bayesian approaches. The results were used to examine evolution of non-molecular characters and to develop a new phylogenetically based infrafamilial classification. As in previous molecular phylogenetic analyses of the family, we found strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets. We recognize three subfamilies in Rosaceae: Rosoideae, including Filipendula, Rubus, Rosa, and three tribes; Dryadoideae, comprising the four actinorhizal genera; and Spiraeoideae, comprising Lyonothamnus and seven tribes. All genera previously assigned to Amygdaloideae and Maloideae are included in Spiraeoideae. Three supertribes, one in Rosoideae and two in Spiraeoideae, are recognized.

700 citations

Book ChapterDOI
TL;DR: Study on the mechanism(s) of pollen digestion remain inconclusive, but suggest that differences in digestibility among pollen types may reflect differences in pollen wall porosity, thickness, and composition.
Abstract: This paper reviews the literature concerning digestion and nutrient content of pollen. Four topics are addressed in detail: 1) The mechanism of pollen digestion by animals; 2) The efficiency of mechanical and digestive removal of pollen content by various animals; 3) Range and taxonomic distribution of pollen nutrients, and 4) Adaptive hypotheses proposed to associate pollen chemistry with pollinator reward. Studies on the mechanism(s) of pollen digestion remain inconclusive, but suggest that differences in digestibility among pollen types may reflect differences in pollen wall porosity, thickness, and composition. Although hummingbirds reportedly digest pollen very poorly, most animals studied, including those that do not regularly consume pollen, can digest 50–100% of ingested grains. Overlooked and recent research of pollen protein content shows that pollen grains may contain over 60% protein, double the amount cited in some studies of pollen-feeding animals. Adaptive hypotheses that associate pollen starch and pollen caloric content with pollinator reward remain unsubstantiated when critically viewed through the lens of phylogeny.

590 citations

Journal ArticleDOI
TL;DR: A critical review of characters used in the systematics of the Brassicaceae is given, and aspects of the origin, classification, and generic delimitation of the family discussed.
Abstract: A critical review of characters used in the systematics of the Brassicaceae is given, and aspects of the origin, classification, and generic delimitation of the family discussed. Molecular phylogenetic studies of the family were reviewed, and major clades identified. Based on molecular studies, especially from the ndhF chloroplast gene, and careful evaluation of morphology and generic circumscriptions, a new tribal alignment of the Brassicaceae is proposed. In all, 25 tribes are recognized, of which seven (Aethionemeae, Boechereae, Descurainieae, Eutremeae, Halimolobeae, Noccaeeae, and Smelowskieae) are described as new. For each tribe, the center(s) of distribution, morphology, and number of taxa are given. Of the 338 genera currently recognized in the Brassicaceae, about 260 genera (or about 77%) were either assigned or tentatively assigned to the 25 tribes. Some problems relating to various genera and tribes are discussed, and future research developments are briefly covered.

586 citations

Journal ArticleDOI
TL;DR: The joint usage ofrps16 intron and ITS sequences provides a powerful tool for resolving many of the difficult taxonomic issues in the tribeSileneae.
Abstract: Intron sequences of the chloroplast generps16 from 46 species were used to examine phylogenetic relationships indicated by nrDNA ITS sequence variation in the tribeSileneae (Caryophyllaceae, Caryophylloideae). This region has previously not been utilized for phylogenetic purposes but the results presented here suggest that it is a consistent and valuable complement to the ITS sequences. Therps16 intron trees are largely congruent with the ITS trees. All the major hypotheses suggested by the ITS data are supported, often at similar bootstrap levels. The joint usage ofrps16 intron and ITS sequences provides a powerful tool for resolving many of the difficult taxonomic issues in the tribeSileneae.

579 citations

Journal ArticleDOI
TL;DR: The data suggest strongly that past glaciation profoundly influenced the genetic architecture of the flora and fauna of the Pacific Northwest, with populations surviving in several well-isolated northern and southern refugia and Pleistocence glaciation molded the intraspecific genetic Architecture of both plants and animals in a geographically similar manner.
Abstract: Molecular studies of plants from the Pacific Northwest of North America suggest a recurrent pattern of genetic differentiation and geographic structuring. In each of five angiosperms and one fern species representing diverse life histories, cpDNA data indicate two clades of populations that are geographically structured. A northern group comprises populations from Alaska to central or southern Oregon, whereas populations from central Oregon southward to northern California form a southern group. In several of these species, a few populations having southern genotypes may have survived in glacial refugia further north in the Olympic Peninsula, Queen Charlotte Islands, and Prince of Wales Island. Allozyme data reveal a similar pattern of differentiation in several other plants from the Pacific Northwest. North-south partitioning of genotypes has also been reported for several animal species from this region. On a broader geographic scale, northsouth partitioning of genotypes has also been observed in other plants from western North America having a variety of geographic distributions. Some species also display a reduction of genetic variability in the northern portion of their range compared to the south. The data suggest strongly that past glaciation profoundly influenced the genetic architecture of the flora and fauna of the Pacific Northwest. Two alternative hypotheses are advanced to explain the geographic structuring of genotypes. First, past glaciation may have created discontinuities in the geographic distributions of plant species, with populations surviving in several well-isolated northern and southern refugia. Following glaciation, migration of genetically differentiated, once-isolated populations resulted in the formation of a continuous geographic distribution with a major genetic discontinuity. Alternatively, plants survived and subsequently migrated northward from a southern refugium, and a genotype became fixed in one or a few populations at the leading edge of recolonization. Subsequent long-distance dispersal from this leading edge resulted in a relatively uniform northern genotype that differs from the southern genotype(s). Whatever the underlying mechanism, Pleistocence glaciation may have molded the intraspecific genetic architecture of both plants and animals from the Pacific Northwest in a geographically similar manner. Future studies should seek to obtain a comprehensive phylogeography for regions that includes a diversity of both plants and animals.

531 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232
202166
202092
201977
201893
2017104