scispace - formally typeset
Journal ArticleDOI

A general and simple method for obtaining R2 from generalized linear mixed-effects models

Reads0
Chats0
TLDR
In this article, the authors make a case for the importance of reporting variance explained (R2) as a relevant summarizing statistic of mixed-effects models, which is rare, even though R2 is routinely reported for linear models and also generalized linear models (GLM).
Abstract
Summary The use of both linear and generalized linear mixed-effects models (LMMs and GLMMs) has become popular not only in social and medical sciences, but also in biological sciences, especially in the field of ecology and evolution. Information criteria, such as Akaike Information Criterion (AIC), are usually presented as model comparison tools for mixed-effects models. The presentation of ‘variance explained’ (R2) as a relevant summarizing statistic of mixed-effects models, however, is rare, even though R2 is routinely reported for linear models (LMs) and also generalized linear models (GLMs). R2 has the extremely useful property of providing an absolute value for the goodness-of-fit of a model, which cannot be given by the information criteria. As a summary statistic that describes the amount of variance explained, R2 can also be a quantity of biological interest. One reason for the under-appreciation of R2 for mixed-effects models lies in the fact that R2 can be defined in a number of ways. Furthermore, most definitions of R2 for mixed-effects have theoretical problems (e.g. decreased or negative R2 values in larger models) and/or their use is hindered by practical difficulties (e.g. implementation). Here, we make a case for the importance of reporting R2 for mixed-effects models. We first provide the common definitions of R2 for LMs and GLMs and discuss the key problems associated with calculating R2 for mixed-effects models. We then recommend a general and simple method for calculating two types of R2 (marginal and conditional R2) for both LMMs and GLMMs, which are less susceptible to common problems. This method is illustrated by examples and can be widely employed by researchers in any fields of research, regardless of software packages used for fitting mixed-effects models. The proposed method has the potential to facilitate the presentation of R2 for a wide range of circumstances.

read more

Citations
More filters
Journal ArticleDOI

piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics

TL;DR: In this paper, the authors present an open-source implementation of structural equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite of interrelated variables.
Journal ArticleDOI

The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.

TL;DR: This paper generalizes the methods called for Poisson and binomial GLMMs to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data and can be used across disciplines and regardless of statistical environments.
Journal ArticleDOI

A brief introduction to mixed effects modelling and multi-model inference in ecology.

TL;DR: This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.
Journal ArticleDOI

rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models

TL;DR: al. as discussed by the authors introduced the R package rptR for the estimation of ICC and R for Gaussian, binomial and Poisson-distributed data, which allows the quantification of coefficients of determination R2 as well as of raw variance components.
References
More filters
Journal ArticleDOI

Estimating the Dimension of a Model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Book

Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach

TL;DR: The second edition of this book is unique in that it focuses on methods for making formal statistical inference from all the models in an a priori set (Multi-Model Inference).

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Book

Applied Regression Analysis

TL;DR: In this article, the Straight Line Case is used to fit a straight line by least squares, and the Durbin-Watson Test is used for checking the straight line fit.
Proceedings Article

Information Theory and an Extention of the Maximum Likelihood Principle

H. Akaike
TL;DR: The classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion to provide answers to many practical problems of statistical model fitting.