scispace - formally typeset
Journal ArticleDOI

AB initio molecular dynamics for liquid metals

Reads0
Chats0
TLDR
It is shown that the exact calculation of the electronic groundstate at each MD timestep is feasible using modern iterative matrix diagonalization algorithms and together with the use of ultrasoft pseudopotentials, ab initio MD simulations can be extended to open-shell transition metals with a high density of states at the Fermi-level.
Abstract
In recent years, ab initio molecular dynamics (MD) techniques have made a profound impact on the investigation of the structure of the electronic and dynamic properties of liquid and amorphous materials In this paper, recent developments in this field are reviewed and it is shown that the exact calculation of the electronic groundstate at each MD timestep is feasible using modern iterative matrix diagonalization algorithms Together with the use of ultrasoft pseudopotentials, ab initio MD simulations can be extended to open-shell transition metals with a high density of states at the Fermi-level The technique is applied to a number of interesting cases: (a) liquid simple metals (Li, Na, Al, Ge), (b) liquid transition metals (Cu, V), and (c) the transition from a liquid metal to an amorphous semiconductor by the rapid quenching of Ge

read more

Citations
More filters
Journal ArticleDOI

Microstructures and properties of high-entropy alloys

TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.
Journal ArticleDOI

First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures

TL;DR: In this article, the tetragonal to orthorhombic ferroelastic phase transition between rutile- and CaCl-type phonon modes at high pressures is studied using first-principles calculations and the Landau free-energy expansion.
Posted Content

First principles phonon calculations in materials science

TL;DR: In this article, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.

Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap

TL;DR: In this paper, the authors used the Raman spectra of strained graphene to estimate the band gap opening under 1% uniaxial tensile strain on a transparent and flexible substrate.
References
More filters
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Ab initio molecular dynamics for liquid metals.

TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Journal ArticleDOI

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.

TL;DR: Novel features are that the pseudopotential itself becomes charge-state dependent, the usual norm-conservation constraint does not apply, and a generalized eigenproblem is introduced.
Journal ArticleDOI

Numerical recipes

Journal ArticleDOI

Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium.

TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Related Papers (5)