scispace - formally typeset
Open AccessJournal ArticleDOI

Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

TLDR
By tuning the propagation velocity in a network based on primate connectivity, a hypothesis that time delays in the network dynamics play a crucial role in the generation of temporally coherent fluctuations is tested.
Abstract
In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present paper we test the hypothesis that time delays in the network dynamics play a crucial role in the generation of these fluctuations. By tuning the propagation velocity in a network based on primate connectivity, we scale the time delays and demonstrate the emergence of the resting state networks for biophysically realistic parameters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Complex brain networks: graph theoretical analysis of structural and functional systems

TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Journal ArticleDOI

Functional and effective connectivity: a review.

TL;DR: The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses.
Journal ArticleDOI

Key role of coupling, delay, and noise in resting brain fluctuations

TL;DR: In numerical simulation, the dynamics of a simplified cortical network using 38 noise-driven (Wilson–Cowan) oscillators, which in isolation remain just below their oscillatory threshold are studied, indicating the presence of stochastic resonance and high sensitivity to changes in diffuse feedback activity.
Journal ArticleDOI

Networks of the Brain

TL;DR: Models of Network Growth All networks, whether they are social, technological, or biological, are the result of a growth process, and many continue to grow for prolonged periods of time, continually modifying their connectivity structure throughout their entire existence.
Journal ArticleDOI

Functional connectivity of the insula in the resting brain

TL;DR: The authors' findings document two major complementary networks involving the ventral-anterior and dorsal-posterior insula: one network links the anterior insula to the middle and inferior temporal cortex and anterior cingulate cortex, and is primarily related to limbic regions which play a role in emotional aspects, and support the use of resting state functional analysis to investigate connectivity in the living human brain.
References
More filters
Book

Ten lectures on wavelets

TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Journal ArticleDOI

Ten Lectures on Wavelets

TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Journal ArticleDOI

Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Journal ArticleDOI

The human brain is intrinsically organized into dynamic, anticorrelated functional networks

TL;DR: It is suggested that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain, featuring the presence of anticorrelated networks in the absence of overt task performance.
Journal ArticleDOI

Functional connectivity in the resting brain: A network analysis of the default mode hypothesis

TL;DR: This study constitutes, to the knowledge, the first resting-state connectivity analysis of the default mode and provides the most compelling evidence to date for the existence of a cohesive default mode network.
Related Papers (5)