scispace - formally typeset
Open AccessJournal ArticleDOI

Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO 2 to solar fuel

TLDR
In this paper, a review of the recent progress in the rational design and fabrication of highly active and selective photocatalysts for the photoreduction of CO2, but also offer some fundamental insights into designing highly efficient photocatalyst for water splitting or pollutant degradation.
Abstract
The shortage of fossil fuels and the disastrous pollution of the environment have led to an increasing interest in artificial photosynthesis. The photocatalytic conversion of CO2 into solar fuel is believed to be one of the best methods to overcome both the energy crisis and environmental problems. It is of significant importance to efficiently manage the surface reactions and the photo-generated charge carriers to maximize the activity and selectivity of semiconductor photocatalysts for photoconversion of CO2 and H2O to solar fuel. To date, a variety of strategies have been developed to boost their photocatalytic activity and selectivity for CO2 photoreduction. Based on the analysis of limited factors in improving the photocatalytic efficiency and selectivity, this review attempts to summarize these strategies and their corresponding design principles, including increased visible-light excitation, promoted charge transfer and separation, enhanced adsorption and activation of CO2, accelerated CO2 reduction kinetics and suppressed undesirable reaction. Furthermore, we not only provide a summary of the recent progress in the rational design and fabrication of highly active and selective photocatalysts for the photoreduction of CO2, but also offer some fundamental insights into designing highly efficient photocatalysts for water splitting or pollutant degradation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A review on g-C3N4-based photocatalysts

TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Journal ArticleDOI

CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts

TL;DR: In this article, a review describes recent advances in the fundamental understanding of CO2 photoreduction on the surface of heterogeneous catalysts and particularly provides an overview of enhancing the adsorption/activation of CO 2 molecules.
Journal ArticleDOI

CdS-Based photocatalysts

TL;DR: In this article, a critical review presents the recent advances and progress in the design and synthesis of various semiconductor photocatalytic technology that converts solar energy into chemical fuel has been widely studied.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

Environmental Applications of Semiconductor Photocatalysis

TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

TL;DR: In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Heterogeneous photocatalyst materials for water splitting

TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Related Papers (5)