scispace - formally typeset
Journal ArticleDOI

Directional adhesion of superhydrophobic butterfly wings.

Yongmei Zheng, +2 more
- 23 Jan 2007 - 
- Vol. 3, Iss: 2, pp 178-182
Reads0
Chats0
TLDR
Direction adhesion on the superhydrophobic wings of the butterfly is showed and it is believed that this finding will help the design of smart, fluid-controllable interfaces that may be applied in novel microfluidic devices and directional, easy-cleaning coatings.
Abstract
We showed directional adhesion on the superhydrophobic wings of the butterfly Morpho aega. A droplet easily rolls off the surface of the wings along the radial outward (RO) direction of the central axis of the body, but is pinned tightly against the RO direction. Interestingly, these two distinct states can be tuned by controlling the posture of the wings (downward or upward) and the direction of airflow across the surface (along or against the RO direction), respectively. Research indicated that these special abilities resulted from the direction-dependent arrangement of flexible nano-tips on ridging nano-stripes and micro-scales overlapped on the wings at the one-dimensional level, where two distinct contact modes of a droplet with orientation-tuneable microstructures occur and thus produce different adhesive forces. We believe that this finding will help the design of smart, fluid-controllable interfaces that may be applied in novel microfluidic devices and directional, easy-cleaning coatings.

read more

Citations
More filters
Journal ArticleDOI

Directional water collection on wetted spider silk

TL;DR: Artificial fibres are designed that mimic the structural features of silk and exhibit its directional water-collecting ability by tapping into both driving forces.
Journal ArticleDOI

Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications

TL;DR: Design, and Applications Shutao Wang,“, Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science.
Journal ArticleDOI

Nature-inspired superwettability systems

TL;DR: In this paper, the historical development, new phenomena and emerging applications of superwettability systems are discussed and a review of the superwetability properties of interfacial materials is presented.
Journal ArticleDOI

A multi-structural and multi-functional integrated fog collection system in cactus

TL;DR: This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features.
Journal ArticleDOI

Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

TL;DR: Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials.
References
More filters
Journal ArticleDOI

Super-hydrophobic surfaces: From natural to artificial

TL;DR: In this article, a super-hydrophobic surface with both a large contact angle (CA) and a small sliding angle (α) has been constructed from carbon nanotubes.
Journal ArticleDOI

Bioinspired surfaces with special wettability

TL;DR: Recent progress in wettability on functional surfaces is reviewed through the cooperation between the chemical composition and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications in daily life, industry, and agriculture.
Journal ArticleDOI

Super-Water-Repellent Fractal Surfaces

TL;DR: In this article, the authors showed that fractal surfaces can be super water repellent (superwettable) when the surfaces are composed of hydrophobic (hydrophilic) materials.
Related Papers (5)