scispace - formally typeset
Journal ArticleDOI

Graphene/Polymer Nanocomposites

TLDR
Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area, and when incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading.
Abstract
Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area. When incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading. We first review production routes to exfoliated graphite with an emphasis on top-down strategies starting from graphite oxide, including advantages and disadvantages of each method. Then solvent- and melt-based strategies to disperse chemically or thermally reduced graphene oxide in polymers are discussed. Analytical techniques for characterizing particle dimensions, surface characteristics, and dispersion in matrix polymers are also introduced. We summarize electrical, thermal, mechanical, and gas barrier properties of the graphene/polymer nanocomposites. We conclude this review listing current challenges associated with processing and scalability of graphene composites and future perspectives f...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene-based polymer nanocomposites

TL;DR: A survey of the literature on polymer nanocomposites with graphene-based fillers including recent work using graphite nanoplatelet fillers is presented in this article, along with methods for dispersing these materials in various polymer matrices.
Journal ArticleDOI

Mechanical properties of graphene and graphene-based nanocomposites

TL;DR: In this paper, the current status of the intrinsic mechanical properties of the graphene-family of materials along with the preparation and properties of bulk graphene-based nanocomposites is thoroughly examined.
Journal ArticleDOI

Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts.

TL;DR: It is demonstrated that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells.
Journal ArticleDOI

The mechanics of graphene nanocomposites: A review

TL;DR: In this paper, the preparation and characterisation of different forms of graphene are reviewed and different techniques that have been employed to prepare graphene such as mechanical and solution exfoliation, and chemical vapour deposition are discussed briefly.
Journal ArticleDOI

Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding.

TL;DR: Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Related Papers (5)