scispace - formally typeset
Journal ArticleDOI

H‐p clouds—an h‐p meshless method

TLDR
The approximating properties of the h-p cloud functions are investigated in this article and a several theorems concerning these properties are presented.
Abstract
A new methodology to build discrete models of boundary-value problems is presented. The h-pcloud method is applicable to arbitrary domains and employs only a scattered set of nodes to build approximate solutions to BVPs. This new method uses radial basis functions of varying size of supports and with polynomialreproducing properties of arbitrary order. The approximating properties of the h-p cloud functions are investigated in this article and a several theorems concerning these properties are presented. Moving least squares interpolants are used to build a partition of unity on the domain of interest. These functions are then used to construct, at a very low cost, trial and test functions for Galerkin approximations. The method exhibits a very high rate of convergence and has a greater -exibility than traditional h-p finite element methods. Several numerical experiments in I-D and 2-D are also presented. @ 1996 John Wiley & Sons, Inc. In most large-scale numerical simulations of physical phenomena, a large percentage of the overall computational effort is expended on technical details connected with meshing. These details include, in particular, grid generation, mesh adaptation to domain geometry, element or cell connectivity, grid motion and separation to model fracture, fragmentation, free surfaces, etc. Moreover, in most computer-aided design work, the generation of an appropriate mesh constitutes, by far, the costliest portion of the computer-aided analysis of products and processes. These are among the reasons that interest in so-called meshless methods has grown rapidly in recent years. Most meshless methods require a scattered set of nodal points in the domain of interest. In these methods, there may be no fixed connectivities between the nodes, unlike the finite element or finite difference methods. This feature has significant implications in modeling some physical phenomena that are characterized by a continuous change in the geometry of the domain under analysis. The analysis of problems such as crack propagation, penetration, and large deformations, can, in principle, be greatly simplified by the use of meshless methods. A growing crack, for example, can be modeled by simply extending the free surfaces that correspond to the crack [ 11. The analysis of large deformation problems by, e.g., finite element methods, may require the continuous remeshing of the domain to avoid the breakdown of the calculation due to

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The extended/generalized finite element method: An overview of the method and its applications

TL;DR: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented in this article, which enables accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements.
Journal ArticleDOI

Nonlocal integral formulations of plasticity and damage: Survey of progress

TL;DR: The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations as mentioned in this paper.
Journal ArticleDOI

Review: Meshless methods: A review and computer implementation aspects

TL;DR: This manuscript is to give a practical overview of meshless methods (for solid mechanics) based on global weak forms through a simple and well-structured MATLAB code, to illustrate the discourse.
Journal ArticleDOI

A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering

TL;DR: In this paper, the authors present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics and discuss the value that is obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations.
Journal ArticleDOI

A new method for modelling cohesive cracks using finite elements

TL;DR: In this paper, a model which allows the introduction of displacements jumps to conventional finite elements is developed, where the path of the discontinuity is completely independent of the mesh structure.
References
More filters
Book

The Finite Element Method for Elliptic Problems

TL;DR: The finite element method has been applied to a variety of nonlinear problems, e.g., Elliptic boundary value problems as discussed by the authors, plate problems, and second-order problems.
Journal ArticleDOI

A numerical approach to the testing of the fission hypothesis.

L.B. Lucy
TL;DR: A finite-size particle scheme for the numerical solution of two-and three-dimensional gas dynamical problems of astronomical interest is described and tested in this article, which is then applied to the fission problem for optically thick protostars.
Journal ArticleDOI

Element‐free Galerkin methods

TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Journal ArticleDOI

Surfaces generated by moving least squares methods

TL;DR: In this article, an analysis of moving least squares (m.l.s.) methods for smoothing and interpolating scattered data is presented, in particular theorems concerning the smoothness of interpolants and the description of m. l.s. processes as projection methods.
Journal ArticleDOI

Scattered data interpolation: tests of some methods

TL;DR: In this paper, the evaluation of methods for scattered data interpolation and some of the results of the tests when applied to a number of methods are presented. But the evaluation process involves evaluation of the methods in terms of timing, storage, accuracy, visual pleasantness of the surface, and ease of implementation.
Related Papers (5)