scispace - formally typeset
Open AccessJournal ArticleDOI

Histopathological Image Analysis: A Review

Reads0
Chats0
TLDR
The recent state of the art CAD technology for digitized histopathology is reviewed and the development and application of novel image analysis technology for a few specific histopathological related problems being pursued in the United States and Europe are described.
Abstract
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning in bioinformatics

TL;DR: Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields, including bioinformatics as discussed by the authors, which has been emphasized in both academia and industry.
Journal ArticleDOI

A Dataset for Breast Cancer Histopathological Image Classification

TL;DR: A dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.ufpr.br/vri/breast-cancer-database, aimed at automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician.
Journal ArticleDOI

Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.

TL;DR: This paper investigates concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches.
Journal ArticleDOI

Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

TL;DR: It is found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.
Journal ArticleDOI

Classification of breast cancer histology images using Convolutional Neural Networks

TL;DR: A method for the classification of hematoxylin and eosin stained breast biopsy images using Convolutional Neural Networks (CNNs) is proposed and the sensitivity of the method for cancer cases is 95.6%.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Book

Principal Component Analysis

TL;DR: In this article, the authors present a graphical representation of data using Principal Component Analysis (PCA) for time series and other non-independent data, as well as a generalization and adaptation of principal component analysis.
Journal ArticleDOI

A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Journal ArticleDOI

Robust Real-Time Face Detection

TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Proceedings ArticleDOI

Robust real-time face detection

TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.
Related Papers (5)