scispace - formally typeset
Open AccessJournal ArticleDOI

Introduction to quantum electromagnetic circuits

Uri Vool, +1 more
- 01 Jul 2017 - 
- Vol. 45, Iss: 7, pp 897-934
TLDR
This review, which is an updated and modernized version of a previous set of Les Houches School lecture notes, has three main parts: how to construct a Hamiltonian for a general circuit, with an emphasis on the quantum treatment of dissipation.
Abstract
The article is a short opinionated review of the quantum treatment of electromagnetic circuits, with no pretension to exhaustiveness. This review, which is an updated and modernized version of a previous set of Les Houches School lecture notes, has three main parts. The first part describes how to construct a Hamiltonian for a general circuit, which can include dissipative elements. The second part describes the quantization of the circuit, with an emphasis on the quantum treatment of dissipation. The final part focuses on the Josephson nonlinear element and the main linear building blocks from which superconducting circuits are assembled. It also includes a brief review of the main types of superconducting artificial atoms, elementary multi-level quantum systems made from basic circuit elements. Copyright © 2017 John Wiley & Sons, Ltd.

read more

Citations
More filters
Journal ArticleDOI

Supplementary information for "Quantum supremacy using a programmable superconducting processor"

TL;DR: In this paper, an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature, is presented.
Journal ArticleDOI

Quantum supremacy using a programmable superconducting processor

Frank Arute, +85 more
- 24 Oct 2019 - 
TL;DR: Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.
Journal ArticleDOI

A quantum engineer's guide to superconducting qubits

TL;DR: In this paper, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control and readout techniques.
Journal ArticleDOI

Microwave photonics with superconducting quantum circuits

TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.
Journal ArticleDOI

Quantum information processing with superconducting circuits: a review

TL;DR: The time is ripe for describing some of the recent development of superconducting devices, systems and applications as well as practical applications of QIP, such as computation and simulation in Physics and Chemistry.
References
More filters
Book

Quantum Computation and Quantum Information

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Journal ArticleDOI

Quantum computation and quantum information

TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Book

Classical Mechanics

Journal ArticleDOI

The quantum internet

TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Related Papers (5)