scispace - formally typeset
Journal ArticleDOI

Localization of brain electrical activity via linearly constrained minimum variance spatial filtering

TLDR
This paper presents a development and analysis of the spatial filtering method for localizing sources of brain electrical activity from surface recordings and explores its sensitivity to deviations between actual and assumed data models.
Abstract
A spatial filtering method for localizing sources of brain electrical activity from surface recordings is described and analyzed. The spatial filters are implemented as a weighted sum of the data recorded at different sites. The weights are chosen to minimize the filter output power subject to a linear constraint. The linear constraint forces the filter to pass brain electrical activity from a specified location, while the power minimization attenuates activity originating at other locations. The estimated output power as a function of location is normalized by the estimated noise power as a function of location to obtain a neural activity index map. Locations of source activity correspond to maxima in the neural activity index map. The method does not require any prior assumptions about the number of active sources of their geometry because it exploits the spatial covariance of the source electrical activity. This paper presents a development and analysis of the method and explores its sensitivity to deviations between actual and assumed data models. The effect on the algorithm of covariance matrix estimation, correlation between sources, and choice of reference is discussed. Simulated and measured data is used to illustrate the efficacy of the approach.

read more

Citations
More filters
Journal ArticleDOI

FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data

TL;DR: FieldTrip is an open source software package that is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data.
Journal ArticleDOI

The WU-Minn Human Connectome Project: An Overview

TL;DR: Progress made during the first half of the Human Connectome Project project in refining the methods for data acquisition and analysis provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.
Journal ArticleDOI

MEG and EEG data analysis with MNE-Python

TL;DR: MNE-Python as discussed by the authors is an open-source software package that provides state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions.
Journal ArticleDOI

Electromagnetic brain mapping

TL;DR: The underlying models currently used in MEG/EEG source estimation are described and the various signal processing steps required to compute these sources are described.
Journal ArticleDOI

EEG source imaging

TL;DR: It is shown that modern EEG source imaging simultaneously details the temporal and spatial dimensions of brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.
References
More filters
Journal ArticleDOI

Beamforming: a versatile approach to spatial filtering

TL;DR: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research.
Journal ArticleDOI

An algorithm for linearly constrained adaptive array processing

O.L. Frost
TL;DR: A constrained least mean-squares algorithm has been derived which is capable of adjusting an array of sensors in real time to respond to a signal coming from a desired direction while discriminating against noises coming from other directions.
Journal ArticleDOI

Improved localizadon of cortical activity by combining eeg and meg with mri cortical surface reconstruction: A linear approach

TL;DR: Model studies suggest that the author may be able to localize multiple cortical sources with spatial resolution as good as PET with this technique, while retaining a much finer grained picture of activity over time.
Journal ArticleDOI

Multiple dipole modeling and localization from spatio-temporal MEG data

TL;DR: The authors present general descriptive models for spatiotemporal MEG (magnetoencephalogram) data and show the separability of the linear moment parameters and nonlinear location parameters in the MEG problem and present a subspace methodology and computational approach to solving the conventional least-squares problem.
Related Papers (5)