scispace - formally typeset
Open AccessJournal ArticleDOI

Networks and epidemic models.

TLDR
A variety of methods are described that allow the mixing network, or an approximation to the network, to be ascertained and how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control are suggested.
Abstract
Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections. Therefore, characteristics of mixing networks—and how these deviate from the random-mixing norm—have become important applied concerns that may enhance the understanding and prediction of epidemic patterns and intervention measures. Here, we review the basis of epidemiological theory (based on random-mixing models) and network theory (based on work from the social sciences and graph theory). We then describe a variety of methods that allow the mixing network, or an approximation to the network, to be ascertained. It is often the case that time and resources limit our ability to accurately find all connections within a network, and hence a generic understanding of the relationship between network structure and disease dynamics is needed. Therefore, we review some of the variety of idealized network types and approximation techniques that have been utilized to elucidate this link. Finally, we look to the future to suggest how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Random graphs

TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Journal ArticleDOI

Epidemic processes in complex networks

TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Journal ArticleDOI

The Web of Human Sexual Contacts

TL;DR: In this article, the authors analyze data on the sexual behavior of a random sample of individuals, and find that the cumulative distributions of the number of sexual partners during the twelve months prior to the survey decays as a power law with similar exponents for females and males.
Journal ArticleDOI

Network 'small-world-ness': a quantitative method for determining canonical network equivalence.

TL;DR: A precise measure of ‘small-world-ness’ S is defined based on the trade off between high local clustering and short path length and several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.
Journal ArticleDOI

“Herd Immunity”: A Rough Guide

TL;DR: Historical, epidemiologic, theoretical, and pragmatic public health perspectives on the concept of herd immunity are provided.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Book

Social Network Analysis: Methods and Applications

TL;DR: This paper presents mathematical representation of social networks in the social and behavioral sciences through the lens of Dyadic and Triadic Interaction Models, which describes the relationships between actor and group measures and the structure of networks.
Book

Graph theory

Frank Harary
Journal ArticleDOI

A contribution to the mathematical theory of epidemics

TL;DR: In this article, the authors considered the problem of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population.