scispace - formally typeset
Open AccessJournal ArticleDOI

Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties

TLDR
The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract
The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting

TL;DR: The microstructural and mechanical properties of Inconel 718 were determined on the specimens manufactured by selective laser melting (SLM) of prealloyed powder as mentioned in this paper, showing that columnar grains of supersaturated solid solution with internal microsegregation of Nb and Mo, demonstrated by fractions of Laves eutectic or its divorced form in interdendritic regions.
Journal ArticleDOI

Alloy design for aircraft engines

TL;DR: This research presents a new generation of metallic materials that are fundamental to advanced aircraft engines and their applications are expanding the scope for discovery and implementation for future generations of advanced propulsion systems.
Journal ArticleDOI

A review on fundamental of high entropy alloys with promising high–temperature properties

TL;DR: In this paper, the microstructures of HESAs consisting of γ and γ′ phases are similar to that of Ni-base superalloys and refractory HEAs.
Journal ArticleDOI

Tool wear characteristics in machining of nickel-based superalloys

TL;DR: In this article, the authors focused on the tool wear characteristics in the machining of nickel-based superalloys, and the state of the art in the fields of failure mechanism, monitoring and prediction, and control of tool wear are reviewed.
Journal ArticleDOI

High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys

TL;DR: The high-temperature strength and deformation behavior of γ/γ′ two-phase Co-Al-W-base alloys have been studied with polycrystalline and single-crystal materials.
References
More filters
Book

Dislocations in solids

TL;DR: In this article, Bertotti, Ferro, and Mazetti proposed a theory of dislocation drag in covalent crystals and formed a model of the formation and evolution of dislocations during irradiation.
Journal ArticleDOI

Creep resistance of CMSX-3 nickel base superalloy single crystals

TL;DR: In this paper, the authors studied the effect of dislocation-free nickel base superalloy single crystals with high volume fractions of the γ′ phase on their deformation and found that the dislocation free precipitates are resistant to shearing by dislocations.
Journal ArticleDOI

The precipitation of topologically close-packed phases in rhenium-containing superalloys

TL;DR: In this paper, the formation of topologically close-packed (TCP) phases due to the addition of solid solution strengtheners, such as rhenium, molybdenum and tungsten, has been studied.
Journal ArticleDOI

Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation

TL;DR: In this paper, it is established from metallographic and flow stress observations that dynamic recrystallization occurs at strains greater than a critical value and results in a recrystized grain size which is determined entirely by the flow stress.
Journal ArticleDOI

Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction

TL;DR: In this article, a third generation Ni-base single-crystal superalloy TMS-75 and its γ/γ " tie line alloys were designed to contain various volume fractions of γ, while the compositions of two individual phases were kept the same.