scispace - formally typeset
Open AccessJournal ArticleDOI

Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities

David L. Youngs
- 01 Dec 1994 - 
- Vol. 12, Iss: 4, pp 725-750
TLDR
In this paper, a two-dimensional turbulence model is used to assess the effect of small-scale turbulent mixing in the axisymmetric implosion of an idealized ICF target.
Abstract
Rayleigh-Taylor (RT) and Richtmyer–Meshkov (RM) instabilities at the pusher–fuel interface in inertial confinement fusion (ICF) targets may significantly degrade thermonuclear burn. Present-day supercomputers may be used to understand the fundamental instability mechanisms and to model the effect of the ensuing mixing on the performance of the ICF target. Direct three-dimensional numerical simulation is used to investigate turbulent mixing due to RT and RM instability in simple situations. A two-dimensional turbulence model is used to assess the effect of small-scale turbulent mixing in the axisymmetric implosion of an idealized ICF target.

read more

Citations
More filters
Journal ArticleDOI

Rayleigh–Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II

TL;DR: In this article, Zhou et al. presented the initial condition dependence of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) mixing layers, and introduced parameters that are used to evaluate the level of mixedness and mixed mass within the layers.
Journal ArticleDOI

Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories

TL;DR: In this article, the turbulent Rayleigh-Taylor instability was investigated over a comprehensive range of fluid density ratio (R)1.3⩽R⵽50 [0.96] and different acceleration histories g(t) using the Linear Electric Motor.
Journal ArticleDOI

An improved reconstruction method for compressible flows with low Mach number features

TL;DR: Numerical tests demonstrate that the new scheme captures shock waves well, significantly improves resolution of low Mach number features and greatly reduces high wave number dissipation in the case of homogeneous decaying turbulence and Richtmyer-Meshkov mixing.
Journal ArticleDOI

The mixing transition in Rayleigh-Taylor instability

TL;DR: In this article, a large-eddy simulation technique is described for computing Rayleigh-Taylor instability, based on high-wavenumber-preserving subgrid-scale models, combined with high-resolution numerical methods.
References
More filters
Journal ArticleDOI

On density effects and large structure in turbulent mixing layers

TL;DR: In this article, Spark shadow pictures and measurements of density fluctuations suggest that turbulent mixing and entrainment is a process of entanglement on the scale of the large structures; some statistical properties of the latter are used to obtain an estimate of entrainedment rates, and large changes of the density ratio across the mixing layer were found to have a relatively small effect on the spreading angle.
Journal ArticleDOI

Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection

TL;DR: In this paper, an approach to numerical convection is presented that exclusively yields upstream-centered schemes, which start from a meshwise approximation of the initial-value distribution by simple basic functions, e.g., Legendre polynomials.

Mathematical Models of turbulence

TL;DR: In this article, turbulence and melange models are used to model models of mathematical models for fluides reference record created on 2005-11-18, modified on 2016-08-08.
Journal ArticleDOI

Numerical investigation of turbulent channel flow

TL;DR: In this article, a large-scale flow field was obtained by directly integrating the filtered, three-dimensional, time dependent, Navier-Stokes equations, and small-scale field motions were simulated through an eddy viscosity model.
Related Papers (5)