scispace - formally typeset
Journal ArticleDOI

Organic acids in the rhizosphere: a critical review

David L. Jones
- 01 Dec 1998 - 
- Vol. 205, Iss: 1, pp 25-44
TLDR
In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Abstract
Organic acids, such as malate, citrate and oxalate, have been proposed to be involved in many processes operating in the rhizosphere, including nutrient acquisition and metal detoxification, alleviation of anaerobic stress in roots, mineral weathering and pathogen attraction. A full assessment of their role in these processes, however, cannot be determined unless the exact mechanisms of plant organic acid release and the fate of these compounds in the soil are more fully understood. This review therefore includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization). In summary, the release of organic acids from roots can operate by multiple mechanisms in response to a number of well-defined environmental stresses (e.g., Al, P and Fe stress, anoxia): These responses, however, are highly stress- and plant-species specific. In addition, this review indicates that the sorption of organic acids to the mineral phase and mineralisation by the soil's microbial biomass are critical to determining the effectiveness of organic acids in most rhizosphere processes.

read more

Citations
More filters
Journal ArticleDOI

Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource

TL;DR: Physiological, biochemical, and molecular studies of white lupin and other species response to P-deficiency have identified targets that may be useful for plant improvement, and Genomic approaches involving identification of expressed sequence tags found under low-P stress may also yield target sites for plant improved.
Journal ArticleDOI

Review of mechanisms and quantification of priming effects.

TL;DR: In this paper, the authors reveal possible causes and processes leading to priming actions using the references on agricultural ecosystems and model experiments, and summarize in Tables for positive and negative real and apparent priming effects induced after the addition of different organic and mineral substances to the soil.
Journal ArticleDOI

Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review

TL;DR: In this paper, the authors give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants.
Journal ArticleDOI

Living in a fungal world: impact of fungi on soil bacterial niche development⋆

TL;DR: The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria, and niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter is focused on.
Journal ArticleDOI

Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation

TL;DR: In this article, the authors discuss the main SOM stabilisation mechanisms with respect to their ability to specifically protect root-derived organic matter (SOM) and show that rootC has a longer residence time in soil than shootC.
References
More filters
Book

The Mineral Nutrition of Higher Plants

M. H. Martin, +1 more
TL;DR: This chapter discusses the relationship between Mineral Nutrition and Plant Diseases and Pests, and the Soil-Root Interface (Rhizosphere) in Relation to Mineral Nutrition.
Book

Mineral Nutrition of Higher Plants

H. Marschner
TL;DR: In this article, the authors discuss the relationship between mineral nutrition and plant diseases and pests, and diagnose deficiency and toxicity of mineral nutrients in leaves and other aerial parts of a plant.
Book

Critical Stability Constants

TL;DR: Erratum to: Aminocarboxylic Acids to: Iminodiacetic Acid Derivatives to: Peptides to: Aliphatic Amines to: Protonation Values for other Ligands.
Book

Physicochemical and Environmental Plant Physiology

Park S. Nobel
TL;DR: In the fourth edition of the book as discussed by the authors, the authors have taken into consideration extensive reviews performed by colleagues and students who have touted this book as the ultimate reference for research and learning.
Related Papers (5)