scispace - formally typeset
Journal ArticleDOI

Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.

David H. Hubel, +1 more
- 01 Mar 1965 - 
- Vol. 28, Iss: 2, pp 229-289
TLDR
To UNDERSTAND VISION in physiological terms represents a formidable problem for the biologist, and one approach is to stimulate the retina with patterns of light while recording from single cells or fibers at various points along the visual pathway.
Abstract
To UNDERSTAND VISION in physiological terms represents a formidable problem for the biologist. I t am0 unts to learning how the nervous system handles incoming messages so that form, color, movement, and depth can be perceived and interpreted. One approach, perhaps the most direct, is to stimulate the retina with patterns of light while recording from single cells or fibers at various points along the visual pa thway. For each cell the optimum stimulus can be determined, and one can note the charac teristics common to cells at the next. each level in the visual pathway, and compare a given level with

read more

Citations
More filters
Journal ArticleDOI

Distributed Hierarchical Processing in the Primate Cerebral Cortex

TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Journal ArticleDOI

Receptive fields and functional architecture of monkey striate cortex

TL;DR: The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light, with response properties very similar to those previously described in the cat.
Journal ArticleDOI

Neocognitron: A Self Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position

TL;DR: A neural network model for a mechanism of visual pattern recognition that is self-organized by “learning without a teacher”, and acquires an ability to recognize stimulus patterns based on the geometrical similarity of their shapes without affected by their positions.
Book

Higher cortical functions in man

TL;DR: Among the authors' patients was a bookkeeper with a severe form of sensory aphasia who could still draw up the annual balance sheet in spite of severe disturbances of speech and although he was unable to remember the names of his subordinates and used to refer to them incorrectly.
Journal ArticleDOI

Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.

TL;DR: Results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
References
More filters
Journal ArticleDOI

Receptive fields of single neurones in the cat's striate cortex

TL;DR: The present investigation, made in acute preparations, includes a study of receptive fields of cells in the cat's striate cortex, which resembled retinal ganglion-cell receptive fields, but the shape and arrangement of excitatory and inhibitory areas differed strikingly from the concentric pattern found in retinalganglion cells.
Journal ArticleDOI

Discharge patterns and functional organization of mammalian retina

TL;DR: The Limulus preparation shows many features which are similar to other simple sense organs, for instance, stretch receptors, however, instead of photochemical events, stretch-deformation acts as the adequate stimulus on sensory terminals and is translated into a characteristic discharge pattern.
Journal ArticleDOI

Modality and topographic properties of single neurons of cat's somatic sensory cortex.

TL;DR: Observations upon the modality and topographical attributes of single neurons of the first somatic sensory area of the cat’s cerebral cortex, the analogue of the cortex of the postcentral gyrus in the primate brain, support an hypothesis of the functional organization of this cortical area.
Journal ArticleDOI

Receptive fields of cells in striate cortex of very young, visually inexperienced kittens.

TL;DR: The purpose was to learn the age at which cortical cells have normal, adult-type receptive fields, and to find out whether such fields exist even in animals that have had no patterned visual stimulation.
Related Papers (5)