scispace - formally typeset
Open AccessJournal ArticleDOI

Scale-Aware Fast R-CNN for Pedestrian Detection

TLDR
SAF R-CNN as discussed by the authors introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges, and outputs from all of the sub-networks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales.
Abstract
In this paper, we consider the problem of pedestrian detection in natural scenes. Intuitively, instances of pedestrians with different spatial scales may exhibit dramatically different features. Thus, large variance in instance scales, which results in undesirable large intracategory variance in features, may severely hurt the performance of modern object instance detection methods. We argue that this issue can be substantially alleviated by the divide-and-conquer philosophy. Taking pedestrian detection as an example, we illustrate how we can leverage this philosophy to develop a Scale-Aware Fast R-CNN (SAF R-CNN) framework. The model introduces multiple built-in subnetworks which detect pedestrians with scales from disjoint ranges. Outputs from all of the subnetworks are then adaptively combined to generate the final detection results that are shown to be robust to large variance in instance scales, via a gate function defined over the sizes of object proposals. Extensive evaluations on several challenging pedestrian detection datasets well demonstrate the effectiveness of the proposed SAF R-CNN. Particularly, our method achieves state-of-the-art performance on Caltech [P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach. Intell. , vol. 34, no. 4, pp. 743–761, Apr. 2012], and obtains competitive results on INRIA [N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , 2005, pp. 886–893], ETH [A. Ess, B. Leibe, and L. V. Gool, “Depth and appearance for mobile scene analysis,” in Proc. Int. Conf. Comput. Vis ., 2007, pp. 1–8], and KITTI [A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit ., 2012, pp. 3354–3361].

read more

Citations
More filters
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Proceedings ArticleDOI

UnitBox: An Advanced Object Detection Network

TL;DR: UnitBox as mentioned in this paper proposes an intersection over union (IoU$) loss function for bounding box prediction, which regresses the four bounds of a predicted box as a whole unit.
Journal ArticleDOI

Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

TL;DR: In this article, the authors systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving and provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection.
Proceedings ArticleDOI

CityPersons: A Diverse Dataset for Pedestrian Detection

TL;DR: In this paper, a new set of person annotations on top of the Cityscapes dataset is introduced, CityPersons, which allows the first time to train one single CNN model that generalizes well over multiple benchmarks.
Journal ArticleDOI

Recent Advances in Deep Learning for Object Detection

TL;DR: A comprehensive survey of recent advances in visual object detection with deep learning can be found in this article, where the authors systematically analyze the existing object detection frameworks and organize the survey into three major parts: detection components, learning strategies, and applications and benchmarks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Proceedings ArticleDOI

You Only Look Once: Unified, Real-Time Object Detection

TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.