scispace - formally typeset
Open AccessJournal ArticleDOI

The Core-Cusp Problem

de Blok
- 01 Jan 2010 - 
- Vol. 2010, pp 789293
Reads0
Chats0
TLDR
In this paper, an overview of the attempts to determine the distribution of dark matter in low surface brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations, is given.
Abstract
This paper gives an overview of the attempts to determine the distribution of dark matter in low surface brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations. Observations seem to indicate an approximately constant dark matter density in the inner parts of galaxies, while cosmological computer simulations indicate a steep power-law-like behaviour. This difference has become known as the “core/cusp problem,” and it remains one of the unsolved problems in small-scale cosmology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Modified Gravity and Cosmology

TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.
Journal ArticleDOI

Ultralight scalars as cosmological dark matter

TL;DR: Fuzzy dark matter (FDM) as discussed by the authorsDM is an alternative to CDM, which is an extremely light boson having a de Broglie wavelength inside the galaxy.
Journal ArticleDOI

Modified Newtonian Dynamics (MOND):Observational Phenomenology and Relativistic Extensions

TL;DR: It is shown that many of these puzzling observations are predicted by one single relation — Milgrom’s law — involving an acceleration constant a0 on the order of the square-root of the cosmological constant in natural units.
Journal ArticleDOI

Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure

TL;DR: In this article, the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matte r halos from the scales of spiral galaxies to galaxy clusters are studied.
Journal ArticleDOI

Dark Matter Self-interactions and Small Scale Structure

TL;DR: In this paper, authors review theories of dark matter beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe.
References
More filters
Journal ArticleDOI

A Universal Density Profile from Hierarchical Clustering

TL;DR: In this article, the authors used high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes, and they found that all such profiles have the same shape, independent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological parameters.
Journal ArticleDOI

The Structure of cold dark matter halos

TL;DR: In this article, high-resolution N-body simulations show that the density profiles of dark matter halos formed in the standard CDM cosmogony can be fit accurately by scaling a simple universal profile.
Journal ArticleDOI

Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology

TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH 2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Related Papers (5)