scispace - formally typeset
Journal ArticleDOI

When inhibition not excitation synchronizes neural firing.

Reads0
Chats0
TLDR
It is found that if the rise time of the synapse is longer than the duration of an action potential, inhibition not excitation leads to synchronized firing.
Abstract
Excitatory and inhibitory synaptic coupling can have counter-intuitive effects on the synchronization of neuronal firing. While it might appear that excitatory coupling would lead to synchronization, we show that frequently inhibition rather than excitation synchronizes firing. We study two identical neurons described by integrate-and-fire models, general phase-coupled models or the Hodgkin-Huxley model with mutual, non-instantaneous excitatory or inhibitory synapses between them. We find that if the rise time of the synapse is longer than the duration of an action potential, inhibition not excitation leads to synchronized firing.

read more

Citations
More filters
Book

Dynamical Systems in Neuroscience

TL;DR: This book explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition, providing a link between the two disciplines.
Book

Spiking Neuron Models: Single Neurons, Populations, Plasticity

TL;DR: A comparison of single and two-dimensional neuron models for spiking neuron models and models of Synaptic Plasticity shows that the former are superior to the latter, while the latter are better suited to population models.
Journal ArticleDOI

Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks

TL;DR: Experimental analysis in the hippocampus and the neocortex and computational analysis suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
References
More filters
Journal ArticleDOI

Thalamocortical oscillations in the sleeping and aroused brain

TL;DR: Analysis of cortical and thalamic networks at many levels, from molecules to single neurons to large neuronal assemblies, with a variety of techniques, is beginning to yield insights into the mechanisms of the generation, modulation, and function of brain oscillations.
Journal ArticleDOI

Synchronization of pulse-coupled biological oscillators

TL;DR: A simple model for synchronous firing of biological oscillators based on Peskin's model of the cardiac pacemaker is studied in this article, which consists of a population of identical integrate-and-fire oscillators, whose coupling between oscillators is pulsatile: when a given oscillator fires, it pulls the others up by a fixed amount, or brings them to the firing threshold, whichever is less.
Journal ArticleDOI

Biological rhythms and the behavior of populations of coupled oscillators

TL;DR: It is proposed that self-entraining communities of this sort may exist within individual metazoan animals and plants as the basis of the observed diurnal coordination of their physiological process.
Related Papers (5)