scispace - formally typeset
Search or ask a question
Topic

Influence diagram

About: Influence diagram is a research topic. Over the lifetime, 3849 publications have been published within this topic receiving 130693 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail, is described, and a reported shortcoming of the basic algorithm is discussed.
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.

17,177 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze a sequential decision model in which each decision maker looks at the decisions made by previous decision makers in taking her own decision, and they show that the decision rules that are chosen by optimizing individuals will be characterized by herd behavior.
Abstract: We analyze a sequential decision model in which each decision maker looks at the decisions made by previous decision makers in taking her own decision. This is rational for her because these other decision makers may have some information that is important for her. We then show that the decision rules that are chosen by optimizing individuals will be characterized by herd behavior; i.e., people will be doing what others are doing rather than using their information. We then show that the resulting equilibrium is inefficient.

5,956 citations

Book
22 Dec 2012
TL;DR: An overview of statistical decision theory, which emphasizes the use and application of the philosophical ideas and mathematical structure of decision theory.
Abstract: 1. Basic concepts 2. Utility and loss 3. Prior information and subjective probability 4. Bayesian analysis 5. Minimax analysis 6. Invariance 7. Preposterior and sequential analysis 8. Complete and essentially complete classes Appendices.

5,573 citations

Book
01 Jan 2001
TL;DR: The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams, and presents a thorough introduction to state-of-the-art solution and analysis algorithms.
Abstract: Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book.

4,566 citations

Book
01 Jan 1996
TL;DR: The principal ideas of probabilistic reasoning - known as Bayesian networks - are outlined and their practical implications illustrated and are intended for MSc students in knowledge-based systems, artificial intelligence and statistics, and for professionals in decision support systems applications and research.
Abstract: Computational modelling of probability has become a major part of automated decision support systems. In this book, the principal ideas of probabilistic reasoning - known as Bayesian networks - are outlined and their practical implications illustrated. The book is intended for MSc students in knowledge-based systems, artificial intelligence and statistics, and for professionals in decision support systems applications and research.

2,782 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
85% related
Probabilistic logic
56K papers, 1.3M citations
84% related
Optimization problem
96.4K papers, 2.1M citations
82% related
Artificial neural network
207K papers, 4.5M citations
82% related
Robustness (computer science)
94.7K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202326
202248
202136
202048
201957
201855