scispace - formally typeset
M

Michele Lazzeri

Researcher at University of Paris

Publications -  144
Citations -  68682

Michele Lazzeri is an academic researcher from University of Paris. The author has contributed to research in topics: Phonon & Graphene. The author has an hindex of 58, co-authored 140 publications receiving 57079 citations. Previous affiliations of Michele Lazzeri include Centre national de la recherche scientifique & IPG Photonics.

Papers
More filters
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Advanced capabilities for materials modelling with Quantum ESPRESSO.

Paolo Giannozzi, +53 more
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Journal ArticleDOI

Advanced capabilities for materials modelling with Quantum ESPRESSO

Paolo Giannozzi, +53 more
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.